Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(12)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-38127386

RESUMO

In hyperpolarization experiments using parahydrogen, a partially negative line (PNL) of o-H2 is occasionally spotted in the nuclear magnetic resonance (NMR) spectra. This is a manifestation of the two-spin order (TSO) of the proton spins, appearing transiently in o-H2 molecules freshly derived from p-H2. For the TSO to be observable, the o-H2 NMR signal must be split into a doublet. In the literature, the splitting is believed to originate from a slow exchange of the dissolved dihydrogen with the dihydride moiety bound to a catalyst present in the reaction mixture. Because this hypothesis may be debatable, in this work a different splitting mechanism is proposed. It employs a residual dipolar coupling (RDC) between the hydrogen protons, originating from a partial orientation of the H2 molecules by the external magnetic field. The orientation effect is due to the anisotropic magnetic polarizability of H2. In a magnetic field of 11.74 T at room temperature, the currently predicted value of the RDC is -0.0024 Hz. Even such small RDC values are sufficient for the PNL effect to be clearly visible in NMR spectra for physically reasonable levels of the TSO in the o-H2 molecules. For RDC values much smaller than the natural linewidth of o-H2, the theoretical frequency distance between the minimum and maximum of PNL proves to be practically independent of the RDC and is of the order of the linewidth. The calculated amplitudes of the PNLs are proportional to the RDC values used in the calculations.

2.
Phys Rev Lett ; 128(2): 022502, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35089728

RESUMO

Collinear laser spectroscopy is performed on the nickel isotopes ^{58-68,70}Ni, using a time-resolved photon counting system. From the measured isotope shifts, nuclear charge radii R_{c} are extracted and compared to theoretical results. Three ab initio approaches all employ, among others, the chiral interaction NNLO_{sat}, which allows an assessment of their accuracy. We find agreement with experiment in differential radii δ⟨r_{c}^{2}⟩ for all employed ab initio methods and interactions, while the absolute radii are consistent with data only for NNLO_{sat}. Within nuclear density functional theory, the Skyrme functional SV-min matches experiment more closely than the Fayans functional Fy(Δr,HFB).

3.
Rev Sci Instrum ; 91(8): 081301, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32872936

RESUMO

We present a new collinear laser spectroscopy setup that has been designed to overcome systematic uncertainty limits arising from high-voltage and frequency measurements, beam superposition, and collisions with residual gas that are present in other installations utilizing this technique. The applied methods and experimental realizations are described, including an active stabilization of the ion-source potential, new types of ion sources that have not been used for collinear laser spectroscopy so far, dedicated installations for pump-and-probe measurements, and a versatile laser system referenced to a frequency comb. The advanced setup enables us to routinely determine transition frequencies, which was so far demonstrated only for a few cases and with lower accuracy at other facilities. It has also been designed to perform accurate high-voltage measurements for metrological applications. Demonstration and performance measurements were carried out with Ca+ and In+ ions.

4.
Phys Rev Lett ; 124(13): 132502, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32302185

RESUMO

We present the first laser spectroscopic measurement of the neutron-rich nucleus ^{68}Ni at the N=40 subshell closure and extract its nuclear charge radius. Since this is the only short-lived isotope for which the dipole polarizability α_{D} has been measured, the combination of these observables provides a benchmark for nuclear structure theory. We compare them to novel coupled-cluster calculations based on different chiral two- and three-nucleon interactions, for which a strong correlation between the charge radius and dipole polarizability is observed, similar to the stable nucleus ^{48}Ca. Three-particle-three-hole correlations in coupled-cluster theory substantially improve the description of the experimental data, which allows to constrain the neutron radius and neutron skin of ^{68}Ni.

5.
Solid State Nucl Magn Reson ; 59-60: 34-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24656571

RESUMO

Variable temperature (1)H wide line NMR spectra of polycrystalline 9,10-dimethyltriptycene-d12 deuterated in the aromatic positions were studied. The spectra show different patterns in an unrepeatable dependence on the way of preparation of the powdered samples. Simultaneously, no anomalies were seen in the MAS and CPMAS proton-decoupled room-temperature (13)C spectra as well as in powder X-ray diffraction patterns. The effects observed in the (1)H spectra are tentatively explained in terms of a phenomenological model. For one of the examined samples it afforded a consistent interpretation of the entire series of temperature dependent spectra in terms of structural non uniformity of the solid material studied. Quantum character of the stochastic dynamics of the methyl groups in the investigated compound was confirmed, although these dynamics are close to the classical limit where the familiar random jump model applies.

6.
Solid State Nucl Magn Reson ; 39(3-4): 72-80, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21316931

RESUMO

Transmission line-based multi-channel solid state NMR probes have many advantages regarding the cost of construction, number of RF-channels, and achievable RF-power levels. Nevertheless, these probes are only rarely employed in solid state-NMR-labs, mainly owing to the difficult experimental determination of the necessary RF-parameters. Here, the efficient design of multi-channel solid state MAS-NMR probes employing transmission line theory and modern techniques of electrical engineering is presented. As technical realization a five-channel ((1)H, (31)P, (13)C, (2)H and (15)N) probe for operation at 7 Tesla is described. This very cost efficient design goal is a multi port single coil transmission line probe based on the design developed by Schaefer and McKay. The electrical performance of the probe is determined by measuring of Scattering matrix parameters (S-parameters) in particular input/output ports. These parameters are compared to the calculated parameters of the design employing the S-matrix formalism. It is shown that the S-matrix formalism provides an excellent tool for examination of transmission line probes and thus the tool for a rational design of these probes. On the other hand, the resulting design provides excellent electrical performance. From a point of view of Nuclear Magnetic Resonance (NMR), calibration spectra of particular ports (channels) are of great importance. The estimation of the π/2 pulses length for all five NMR channels is presented.


Assuntos
Eletricidade , Engenharia/métodos , Espectroscopia de Ressonância Magnética/métodos
7.
Solid State Nucl Magn Reson ; 35(3): 194-200, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19181490

RESUMO

Proton spin-lattice relaxation studies are performed for powder samples of 9,10-dimethyltriptycene (DMT) and its isotopomer DMT-d(12) in which all the non-methyl protons in the molecule are replaced by deuterons. The relaxation data are interpreted in terms of the conventional relaxation theory based on the random jump model in which the Pauli correlations between the relevant spin and torsional states are discarded. The Arrhenius activation energies, obtained from the relaxation data, 25.3 and 24.8 kJ mol(-1) for DMT and DMT-d(12), respectively, are very high as for the methyl groups. The validity of the jump model in the present case is considered from the perspective of Haupt theory in which the Pauli principle is explicitly invoked. To this purpose, the dynamic quantities entering the Haupt model are reinterpreted in the spirit of the damped quantum rotation (DQR) approach introduced recently for the purpose of NMR lineshape studies of hindered molecular rotators. Theoretical modelling of the relevant methyl group dynamics, based on the DQR theory, was performed. From these calculations it is inferred that direct assessments of the torsional barrier heights, based on the Arrhenius activation energies extracted from relaxation data, should be treated with caution.

8.
Magn Reson Chem ; 45(12): 1040-4, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18044806

RESUMO

1,2,3,4-tetrachloro-5,6,7,8-tetrafluoro-9-methyltriptycene was studied in NMR spectra at low temperatures where the methyl group dynamics is frozen. Values of 5J(19F,1H), 1J(13C,1H), and 2J(1H,1H) for the individual methyl protons were measured. They are in a fair agreement with the corresponding theoretical values calculated at a density functional theory (DFT) level. The 5J(19F,1H) couplings involve the peri-F nucleus and occur via the 'through space' mechanism. Both the natural bond orbital analysis (at a HF level) and the observed pattern of 1J(13C,1H) coupling values corroborate occurrence in this molecule of intramolecular, blue-shifting hydrogen bonds engaging the methyl hydrogens. The 'through space' 5J(19F,1H) couplings may indicate the routes of electron density transfers that escape detection by the natural bond analysis. A consideration of these effects can enrich the chemical intuition involving this specific sort of H-bonds.


Assuntos
Antracenos/química , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Simulação por Computador , Ligação de Hidrogênio , Modelos Químicos , Conformação Molecular , Padrões de Referência , Sensibilidade e Especificidade
9.
J Chem Phys ; 127(18): 184504, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18020646

RESUMO

In Part I of this series of papers, the damped quantum rotation (DQR) theory, formulated originally for hindered threefold molecular rotors in solids, was generalized to the N-fold case. The stochastic dynamics of such objects, evidenced in NMR line shapes, was shown to be more complicated than in the standard model of classical jumps between the wells of the N-fold torsional potential. Actually, it comprises certain quantum rate (i.e., coherence-damping) processes subject to the requirements of the Pauli principle. The jump picture is recovered only when the quantum rates fit specific patterns. In this work, one of the ways of approaching such a classical limit is identified for the benzene rotor. This is inferred from a quantum mechanical model whose validity was earlier confirmed for a methyl group. Based on that model, theoretical calculations for the benzene ring dynamics in a clathrate crystal, 1-(9-anthryloxy)anthraquinone/benzene-d6, confronted with the pertinent literature data, point to possible deviations from the classical limit. However, the predicted DQR effects are too small to be observed in solid echo 2H NMR spectra of the C6D6 isotopomer. The chances of detecting the effects are improved when Carr-Purcell echo 1H spectra of a single crystal of the isotopomer including C6H6 as a guest are considered. The substantial differences in the sensitivity to the DQR effects of the spectra of protonated and deuterated benzene are concerned with different magnitudes of the intramolecular dipolar spin couplings. The dynamic isotope effect (C6D6 vs C6H6), which is small in this case, is only of secondary importance. Legitimacy of the use of the jump model in 2H NMR line shape studies of benzene-d6 is fully confirmed by the present considerations. However, the physical significance of the dynamic parameters extracted from such studies is shown from a new perspective.

10.
J Chem Phys ; 123(20): 204509, 2005 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-16351283

RESUMO

The damped quantum rotation (DQR) theory, formulated originally for methyl-like atomic groupings, is now extended to hindered (N>3)-fold molecular rotors, such as the cyclopentadienyl, benzene, and cycloheptatrienyl rings in solid phase environments. It heightens the significance of the Pauli principle in shaping up the stochastic dynamics of such objects, reflected in NMR line shapes. The corresponding NMR line-shape equation is derived; its stochastic part is shown for the first time to have the double commutator form for any values of the quantum-mechanical (coherence-damping) rate constants entering it. Constraints on the relative magnitudes of such constants are determined under which the DQR line-shape equation is converted into the phenomenological Alexander-Binsch equation describing classical jumps of the rotor. When all the quantum rate constants happen to be equal, the phenomenological model of equal jump rates between any two of the N (equivalent) orientations of the rotor is reproduced. On the other hand, the seemingly most plausible (for N>3) nearest-neighbor hopping model does not have any peculiar grounds in the DQR approach. For the special instances of stochastic molecular motions addressed in this work, the extended DQR formalism affords a quantification of the "degree of classicality" represented by a complete set of the relevant quantum rate constants. In view of our earlier experimental findings for the methyl rotors, the very occurrence of the nonclassical DQR effects seems unquestionable even for the objects of the size of benzene. The question of under what circumstances such effects can be big enough to be detected experimentally will be addressed in Part II of this work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...