Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Primates ; 64(4): 407-413, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37140752

RESUMO

Monitoring the population size of threatened primate species with minimal disturbance is becoming an outstanding requirement for conservation and wildlife management. Drones with thermal infrared (TIR) and visible spectrum (RGB) imaging are increasingly used to survey arboreal primates, but ground-truthing is still required to assess the effectiveness of drone-based count estimates. Our pilot study aims to assess the ability of a drone with both TIR and RGB sensors to detect, count, and identify semi-wild population of four endangered species of langurs and gibbon in the Endangered Primate Rescue Center (EPRC) in northern Vietnam. We found that TIR imagery enabled higher detection rates compared to RGB imagery and obtained an accurate count with the TIR only after four drone flights. We could identify langurs species based on thermal signature at a flight height of 50 m from the ground level (max tree height = 15 m), via size and shape of the body. With TIR imagery, we were able to record inconspicuous behaviors such as foraging and play. While some individuals initially showed flight or avoidance behaviors when the drone was sighted, these behaviors decreased or were absent on following drone surveys. Our study suggests that monitoring and precisely counting langur and gibbon species populations could be successful with the use of thermal drones only.


Assuntos
Espécies em Perigo de Extinção , Presbytini , Dispositivos Aéreos não Tripulados , Animais , Espécies em Perigo de Extinção/estatística & dados numéricos , Hylobates , Projetos Piloto , Primatas , Dispositivos Aéreos não Tripulados/instrumentação , Vietnã , População , Raios Infravermelhos
2.
Int J Mol Sci ; 22(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530493

RESUMO

The impact of the Gram-negative bacterium Escherichia coli (E. coli) on the microbiomic and pathogenic phenomena occurring in humans and other warm-blooded animals is relatively well-recognized. At the same time, there are scant data concerning the role of E. coli strains in the health and disease of cold-blooded animals. It is presently known that reptiles are common asymptomatic carriers of another human pathogen, Salmonella, which, when transferred to humans, may cause a disease referred to as reptile-associated salmonellosis (RAS). We therefore hypothesized that reptiles may also be carriers of specific E. coli strains (reptilian Escherichia coli, RepEC) which may differ in their genetic composition from the human uropathogenic strain (UPEC) and avian pathogenic E. coli (APEC). Therefore, we isolated RepECs (n = 24) from reptile feces and compared isolated strains' pathogenic potentials and phylogenic relations with the aforementioned UPEC (n = 24) and APEC (n = 24) strains. To this end, we conducted an array of molecular analyses, including determination of the phylogenetic groups of E. coli, virulence genotyping, Pulsed-Field Gel Electrophoresis-Restriction Analysis (RA-PFGE) and genetic population structure analysis using Multi-Locus Sequence Typing (MLST). The majority of the tested RepEC strains belonged to nonpathogenic phylogroups, with an important exception of one strain, which belonged to the pathogenic group B2, typical of extraintestinal pathogenic E. coli. This strain was part of the globally disseminated ST131 lineage. Unlike RepEC strains and in line with previous studies, a high percentage of UPEC strains belonged to the phylogroup B2, and the percentage distribution of phylogroups among the tested APEC strains was relatively homogenous, with most coming from the following nonpathogenic groups: C, A and B1. The RA-PFGE displayed a high genetic diversity among all the tested E. coli groups. In the case of RepEC strains, the frequency of occurrence of virulence genes (VGs) was lower than in the UPEC and APEC strains. The presented study is one of the first attempting to compare the phylogenetic structures of E. coli populations isolated from three groups of vertebrates: reptiles, birds and mammals (humans).


Assuntos
Doenças dos Animais/microbiologia , Infecções por Escherichia coli/veterinária , Filogenia , Répteis/microbiologia , Escherichia coli Uropatogênica/classificação , Escherichia coli Uropatogênica/genética , Animais , Proteínas de Escherichia coli/genética , Especificidade de Hospedeiro , Humanos , Tipagem de Sequências Multilocus , Doenças das Aves Domésticas/microbiologia , Virulência/genética , Fatores de Virulência/genética
3.
BMC Vet Res ; 15(1): 312, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477105

RESUMO

BACKGROUND: Salmonella is generally considered as a human pathogen causing typhoid fever and gastrointestinal infections called salmonellosis, with S. Enteritidis and S. Typhimurium strains as the main causative agents. Salmonella enterica strains have a wide host array including humans, birds, pigs, horses, dogs, cats, reptiles, amphibians and insects. Up to 90% of reptiles are the carriers of one or more serovars of Salmonella. Extraintestinal bacterial infections associated with reptiles pose serious health threat to humans. The import of exotic species of reptiles as pet animals to Europe correlates with the emergence of Salmonella serotypes, which not found previously in European countries. The presented study is a new report about Salmonella serotypes associated with exotic reptiles in Poland. The goal of this research was to examine the zoonotic potential of Salmonella strains isolated from reptiles by comparative analysis with S. Enteritidis strains occurring in human population and causing salmonellosis. RESULTS: The main findings of our work show that exotic reptiles are asymptomatic carriers of Salmonella serovars other than correlated with salmonellosis in humans (S. Enteritidis, S. Typhimurium). Among the isolated Salmonella strains we identified serovars that have not been reported earlier in Poland, for example belonging to subspecies diarizonae and salamae. Restriction analysis with Pulsed-field Gel Electrophoresis (PFGE), showed a great diversity among Salmonella strains isolated from reptiles. Almost all tested strains had distinct restriction patterns. While S. Enteritidis strains were quite homogeneous in term of phylogenetic relations. Most of the tested VGs were common for the two tested groups of Salmonella strains. CONCLUSIONS: The obtained results show that Salmonella strains isolated from reptiles share most of virulence genes with the S. Enteritidis strains and exhibit a greater phylogenetic diversity than the tested S. Enteritidis population.


Assuntos
Eletroforese em Gel de Campo Pulsado , Répteis/microbiologia , Infecções por Salmonella/microbiologia , Salmonella enterica/genética , Animais , Portador Sadio , Cromatografia Gasosa , DNA Bacteriano , Genótipo , Humanos , Salmonella enterica/patogenicidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Virulência , Zoonoses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...