Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 14(3): e1007305, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29579048

RESUMO

The mechanisms by which the sensory environment influences metabolic homeostasis remains poorly understood. In this report, we show that oxygen, a potent environmental signal, is an important regulator of whole body lipid metabolism. C. elegans oxygen-sensing neurons reciprocally regulate peripheral lipid metabolism under normoxia in the following way: under high oxygen and food absence, URX sensory neurons are activated, and stimulate fat loss in the intestine, the major metabolic organ for C. elegans. Under lower oxygen conditions or when food is present, the BAG sensory neurons respond by repressing the resting properties of the URX neurons. A genetic screen to identify modulators of this effect led to the identification of a BAG-neuron-specific neuropeptide called FLP-17, whose cognate receptor EGL-6 functions in URX neurons. Thus, BAG sensory neurons counterbalance the metabolic effect of tonically active URX neurons via neuropeptide communication. The combined regulatory actions of these neurons serve to precisely tune the rate and extent of fat loss to the availability of food and oxygen, and provides an interesting example of the myriad mechanisms underlying homeostatic control.


Assuntos
Caenorhabditis elegans/metabolismo , Metabolismo dos Lipídeos , Neuropeptídeos/metabolismo , Oxigênio/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Comunicação Celular , Guanilato Ciclase/metabolismo , Mucosa Intestinal/metabolismo , Transdução de Sinais
2.
Nat Commun ; 8: 14237, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28128367

RESUMO

Serotonin, a central neuromodulator with ancient ties to feeding and metabolism, is a major driver of body fat loss. However, mechanisms by which central serotonin action leads to fat loss remain unknown. Here, we report that the FLP-7 neuropeptide and its cognate receptor, NPR-22, function as the ligand-receptor pair that defines the neuroendocrine axis of serotonergic body fat loss in Caenorhabditis elegans. FLP-7 is secreted as a neuroendocrine peptide in proportion to fluctuations in neural serotonin circuit functions, and its release is regulated from secretory neurons via the nutrient sensor AMPK. FLP-7 acts via the NPR-22/Tachykinin2 receptor in the intestine and drives fat loss via the adipocyte triglyceride lipase ATGL-1. Importantly, this ligand-receptor pair does not alter other serotonin-dependent behaviours including food intake. For global modulators such as serotonin, the use of distinct neuroendocrine peptides for each output may be one means to achieve phenotypic selectivity.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Neuropeptídeos/fisiologia , Receptores de Neuropeptídeos/fisiologia , Serotonina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo/fisiologia , Animais , Comportamento Animal/fisiologia , Ingestão de Alimentos/fisiologia , Indóis/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Mutação , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Sistemas Neurossecretores/fisiologia , Piperidinas/farmacologia , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
3.
Cell Rep ; 14(7): 1641-1654, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26876168

RESUMO

It is known that internal physiological state, or interoception, influences CNS function and behavior. However, the neurons and mechanisms that integrate sensory information with internal physiological state remain largely unknown. Here, we identify C. elegans body cavity neurons called URX(L/R) as central homeostatic sensors that integrate fluctuations in oxygen availability with internal metabolic state. We show that depletion of internal body fat reserves increases the tonic activity of URX neurons, which influences the magnitude of the evoked sensory response to oxygen. These responses are integrated via intracellular cGMP and Ca(2+). The extent of neuronal activity thus reflects the balance between the perception of oxygen and available fat reserves. The URX homeostatic sensor ensures that neural signals that stimulate fat loss are only deployed when there are sufficient fat reserves to do so. Our results uncover an interoceptive neuroendocrine axis that relays internal state information to the nervous system.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Oxigênio/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Dióxido de Carbono/farmacologia , GMP Cíclico/metabolismo , Potenciais Somatossensoriais Evocados/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Homeostase/genética , Interocepção/efeitos dos fármacos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Lipase/antagonistas & inibidores , Lipase/genética , Lipase/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA