Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 36: 316-328, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30232024

RESUMO

We hypothesized that changes in the mitochondrial DNA (mtDNA) would significantly influence whole body metabolism, adiposity and gene expression in response to diet. Because it is not feasible to directly test these predictions in humans we used Mitochondrial-Nuclear eXchange mice, which have reciprocally exchanged nuclear and mitochondrial genomes between different Mus musculus strains. Results demonstrate that nuclear-mitochondrial genetic background combination significantly alters metabolic efficiency and body composition. Comparative RNA sequencing analysis in adipose tissues also showed a clear influence of the mtDNA on regulating nuclear gene expression on the same nuclear background (up to a 10-fold change in the number of differentially expressed genes), revealing that neither Mendelian nor mitochondrial genetics unilaterally control gene expression. Additional analyses indicate that nuclear-mitochondrial genome combination modulates gene expression in a manner heretofore not described. These findings provide a new framework for understanding complex genetic disease susceptibility.


Assuntos
Adiposidade/genética , Metabolismo Energético/genética , Epistasia Genética , Regulação da Expressão Gênica , Genes Mitocondriais , Mitocôndrias/genética , Mitocôndrias/metabolismo , Tecido Adiposo/metabolismo , Animais , Biomarcadores , Composição Corporal , Feminino , Perfilação da Expressão Gênica , Patrimônio Genético , Genoma Mitocondrial , Masculino , Camundongos , Transcriptoma
2.
Am J Physiol Regul Integr Comp Physiol ; 307(2): R121-37, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24789993

RESUMO

Circadian rhythms are essential to cardiovascular health and disease. Temporal coordination of cardiac structure and function has focused primarily at the physiological and gene expression levels, but these analyses are invariably incomplete, not the least because proteins underlie many biological processes. The purpose of this study was to reveal the diurnal cardiac proteome and important contributions to cardiac function. The 24-h day-night murine cardiac proteome was assessed by two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-mass spectrometry. Daily variation was considerable, as ∼7.8% (90/1,147) of spots exhibited statistical changes at paired times across the 24-h light- (L) dark (D) cycle. JTK_CYCLE was used to investigate underlying diurnal rhythms in corresponding mRNA. We next revealed that disruption of the L:D cycle altered protein profiles and diurnal variation in cardiac function in Langendorff-perfused hearts, relative to the L:D cycle. To investigate the role of the circadian clock mechanism, we used cardiomyocyte clock mutant (CCM) mice. CCM myofilaments exhibited a loss of time-of-day-dependent maximal calcium-dependent ATP consumption, and altered phosphorylation rhythms. Moreover, the cardiac proteome was significantly altered in CCM hearts, especially enzymes regulating vital metabolic pathways. Lastly, we used a model of pressure overload cardiac hypertrophy to demonstrate the temporal proteome during heart disease. Our studies demonstrate that time of day plays a direct role in cardiac protein abundance and indicate a novel mechanistic contribution of circadian biology to cardiovascular structure and function.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Coração/fisiologia , Miócitos Cardíacos/metabolismo , Proteoma/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/fisiologia , RNA Mensageiro/metabolismo
3.
J Biol Chem ; 286(52): 44606-19, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22069332

RESUMO

The cardiomyocyte circadian clock directly regulates multiple myocardial functions in a time-of-day-dependent manner, including gene expression, metabolism, contractility, and ischemic tolerance. These same biological processes are also directly influenced by modification of proteins by monosaccharides of O-linked ß-N-acetylglucosamine (O-GlcNAc). Because the circadian clock and protein O-GlcNAcylation have common regulatory roles in the heart, we hypothesized that a relationship exists between the two. We report that total cardiac protein O-GlcNAc levels exhibit a diurnal variation in mouse hearts, peaking during the active/awake phase. Genetic ablation of the circadian clock specifically in cardiomyocytes in vivo abolishes diurnal variations in cardiac O-GlcNAc levels. These time-of-day-dependent variations appear to be mediated by clock-dependent regulation of O-GlcNAc transferase and O-GlcNAcase protein levels, glucose metabolism/uptake, and glutamine synthesis in an NAD-independent manner. We also identify the clock component Bmal1 as an O-GlcNAc-modified protein. Increasing protein O-GlcNAcylation (through pharmacological inhibition of O-GlcNAcase) results in diminished Per2 protein levels, time-of-day-dependent induction of bmal1 gene expression, and phase advances in the suprachiasmatic nucleus clock. Collectively, these data suggest that the cardiomyocyte circadian clock increases protein O-GlcNAcylation in the heart during the active/awake phase through coordinated regulation of the hexosamine biosynthetic pathway and that protein O-GlcNAcylation in turn influences the timing of the circadian clock.


Assuntos
Relógios Circadianos/fisiologia , Glicoproteínas/metabolismo , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Glicoproteínas/genética , Glicosilação , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Musculares/genética , Miocárdio/citologia , Miócitos Cardíacos/citologia , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
4.
Chronobiol Int ; 28(3): 187-203, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21452915

RESUMO

Circadian dyssynchrony of an organism (at the whole-body level) with its environment, either through light-dark (LD) cycle or genetic manipulation of clock genes, augments various cardiometabolic diseases. The cardiomyocyte circadian clock has recently been shown to influence multiple myocardial processes, ranging from transcriptional regulation and energy metabolism to contractile function. The authors, therefore, reasoned that chronic dyssychrony of the cardiomyocyte circadian clock with its environment would precipitate myocardial maladaptation to a circadian challenge (simulated shiftwork; SSW). To test this hypothesis, 2- and 20-month-old wild-type and CCM (Cardiomyocyte Clock Mutant; a model with genetic temporal suspension of the cardiomyocyte circadian clock at the active-to-sleep phase transition) mice were subjected to chronic (16-wks) biweekly 12-h phase shifts in the LD cycle (i.e., SSW). Assessment of adaptation/maladaptation at whole-body homeostatic, gravimetric, humoral, histological, transcriptional, and cardiac contractile function levels revealed essentially identical responses between wild-type and CCM littermates. However, CCM hearts exhibited increased biventricular weight, cardiomyocyte size, and molecular markers of hypertrophy (anf, mcip1), independent of aging and/or SSW. Similarly, a second genetic model of selective temporal suspension of the cardiomyocyte circadian clock (Cardiomyocyte-specific BMAL1 Knockout [CBK] mice) exhibits increased biventricular weight and mcip1 expression. Wild-type mice exhibit 5-fold greater cardiac hypertrophic growth (and 6-fold greater anf mRNA induction) when challenged with the hypertrophic agonist isoproterenol at the active-to-sleep phase transition, relative to isoproterenol administration at the sleep-to-active phase transition. This diurnal variation was absent in CCM mice. Collectively, these data suggest that the cardiomyocyte circadian clock likely influences responsiveness of the heart to hypertrophic stimuli.


Assuntos
Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Cardiomegalia/induzido quimicamente , Relógios Circadianos/fisiologia , Miócitos Cardíacos/metabolismo , Envelhecimento , Animais , Temperatura Corporal , Cardiomegalia/metabolismo , Cardiotônicos/toxicidade , Metabolismo Energético , Regulação da Expressão Gênica/fisiologia , Isoproterenol/toxicidade , Camundongos , Camundongos Knockout , Atividade Motora , Mutação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...