Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(12): e0261170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34914762

RESUMO

OBJECTIVE: We have used long-read single molecule, real-time (SMRT) sequencing to fully characterize a ~12Mb genomic region on chromosome Xq24-q27, significantly linked to bipolar disorder (BD) in an extended family from a genetic sub-isolate. This family segregates BD in at least four generations with 24 affected individuals. METHODS: We selected 16 family members for targeted sequencing. The selected individuals either carried the disease haplotype, were non-carriers of the disease haplotype, or served as married-in controls. We designed hybrid capture probes enriching for 5-9Kb fragments spanning the entire 12Mb region that were then sequenced to screen for candidate structural variants (SVs) that could explain the increased risk for BD in this extended family. RESULTS: Altogether, 201 variants were detected in the critically linked region. Although most of these represented common variants, three variants emerged that showed near-perfect segregation among all BD type I affected individuals. Two of the SVs were identified in or near genes belonging to the RNA Binding Motif Protein, X-Linked (RBMX) gene family-a 330bp Alu (subfamily AluYa5) deletion in intron 3 of the RBMX2 gene and an intergenic 27bp tandem repeat deletion between the RBMX and G protein-coupled receptor 101 (GPR101) genes. The third SV was a 50bp tandem repeat insertion in intron 1 of the Coagulation Factor IX (F9) gene. CONCLUSIONS: Among the three genetically linked SVs, additional evidence supported the Alu element deletion in RBMX2 as the leading candidate for contributing directly to the disease development of BD type I in this extended family.


Assuntos
Elementos Alu , Transtorno Bipolar/genética , Genes Ligados ao Cromossomo X , Predisposição Genética para Doença , Feminino , Humanos , Masculino , Linhagem
2.
PLoS One ; 15(1): e0226340, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31940362

RESUMO

Structural variation (SV) is typically defined as variation within the human genome that exceeds 50 base pairs (bp). SV may be copy number neutral or it may involve duplications, deletions, and complex rearrangements. Recent studies have shown SV to be associated with many human diseases. However, studies of SV have been challenging due to technological constraints. With the advent of third generation (long-read) sequencing technology, exploration of longer stretches of DNA not easily examined previously has been made possible. In the present study, we utilized third generation (long-read) sequencing techniques to examine SV in the EGFR landscape of four haplotypes derived from two human samples. We analyzed the EGFR gene and its landscape (+/- 500,000 base pairs) using this approach and were able to identify a region of non-coding DNA with over 90% similarity to the most common activating EGFR mutation in non-small cell lung cancer. Based on previously published Alu-element genome instability algorithms, we propose a molecular mechanism to explain how this non-coding region of DNA may be interacting with and impacting the stability of the EGFR gene and potentially generating this cancer-driver gene. By these techniques, we were also able to identify previously hidden structural variation in the four haplotypes and in the human reference genome (hg38). We applied previously published algorithms to compare the relative stabilities of these five different EGFR gene landscape haplotypes to estimate their relative potentials to generate the EGFR exon 19, 15 bp canonical deletion. To our knowledge, the present study is the first to use the differences in genomic architecture between targeted cancer-linked phased haplotypes to estimate their relative potentials to form a common cancer-linked driver mutation.


Assuntos
Genes erbB-1/genética , Variação Genética , Genoma Humano/genética , Instabilidade Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Carcinoma Pulmonar de Células não Pequenas/genética , Simulação por Computador , Haplótipos , Humanos , Neoplasias Pulmonares/genética , Análise de Sequência de DNA
3.
Mol Reprod Dev ; 75(7): 1196-207, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18247330

RESUMO

Acrosin is thought to fulfill several different roles in fertilization including that of a serine protease and in secondary zona pellucida (ZP) binding. However, acrosin's importance as a fertilization protein has been questioned. Especially since it was discovered that acrosin knockout mice are fertile. In this study, we explored the sites involved in serine protease activity and secondary binding. We also assessed conservation in functional sites across species and examined whether amino acid changes present in the human population have the potential to affect fertility. In addition, since many mammalian reproduction proteins have been found to evolve rapidly, we tested for positive selection. Sequences from 43 mammals from all 19 placental orders, which included a total of 828 nucleotides from acrosin exons 2, 3, 4, and a portion of exon 5, were obtained. We found that all sites of the serine catalytic triad as well as three other sites linked to catalytic activity were completely conserved. Five of six sites proposed to play a role in secondary binding were 100% conserved as basic residues. These results support an evolutionary conserved role for acrosin as a serine protease and secondary binding protein across placental mammals. We found statistically significant support for positive selection within acrosin, but no single amino acid site reached the significance level of P > 0.95 for inclusion within the category omega > 1. Based upon two amino acid mutation scoring systems, three out of seven human residue changing single nucleotide polymorphisms (SNPs) were found to be potentially protein-altering mutations.


Assuntos
Acrosina/genética , Evolução Molecular , Placenta/fisiologia , Animais , Bovinos , Feminino , Fertilização , Humanos , Masculino , Mamíferos , Camundongos , Pan troglodytes , Gravidez , Espermatozoides/fisiologia , Zona Pelúcida
4.
Mol Ecol ; 14(6): 1741-54, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15836646

RESUMO

The Lycaeides butterfly species complex in North America consists of two nominal, morphologically defined species. These butterflies are ecologically diverse and appear to be distributed as a geographically complex mosaic of locally differentiated populations that may be undergoing adaptive radiation. We asked whether patterns of molecular genetic variation within the species complex are congruent with currently recognized morphological species and whether the distribution of molecular variation is consistent with the hypothesis that Pleistocene climate changes contributed to the process of differentiation within the genus. Variation in the form of the genitalia from 726 males from 59 populations clearly distinguishes both species with only six populations containing morphologically intermediate or ambiguous individuals. However, partitioning of molecular variance in a 236 bp section of the mitochondrial AT-rich region from 628 individuals (57 populations) surveyed using single strand conformation polymorphism analysis (SSCP) indicates that only 26% of the total genetic variation is distributed along nominal species boundaries as defined by morphology. Instead, three phylogeographical groups were detected, represented by three major haplotype clades, which account for 90% of the total genetic variance. Pleistocene glaciations appear to have fostered divergence during glacial maxima, while post-glacial range expansions created opportunities for gene exchange and reticulation along suture zones between geographical groups. Data presented here allow us to make inferences about the history of the species complex. However, evidence of ancestral polymorphism and reticulation limit our ability to define species boundaries based on mitochondrial DNA sequence variation.


Assuntos
Borboletas/genética , Demografia , Variação Genética , Genética Populacional , Genitália Masculina/anatomia & histologia , Análise de Variância , Animais , Sequência de Bases , Borboletas/anatomia & histologia , Borboletas/classificação , Análise por Conglomerados , Primers do DNA , DNA Mitocondrial/genética , Geografia , Haplótipos/genética , Masculino , Modelos Genéticos , Dados de Sequência Molecular , América do Norte , Polimorfismo Conformacional de Fita Simples , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...