Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Ecol ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637418

RESUMO

Scirpophaga incertulas Walker (Lepidoptera: Crambidae, yellow stem borer, YSB) is a monophagous insect pest that causes significant yield loss in rice (Oryza staiva L.). Semiochemical based pest management is being sought as an alternate to chemical pesticides to reduce pesticide footprints. We hypothesized differential release of volatiles from host rice and two companion non-host weeds, Echinochloa colona and Echinochloa crus-galli could be responsible for oviposition and biology of YSB and these chemicals could be used for YSB management. Number of eggs laid, and number of larvae hatched were significantly higher in rice plant as compared to weeds. YSB could only form dead hearts in rice plants. YSB significantly preferred host-plant volatiles compared to the non-host plants both in choice and no-choice tests in an Y-tube olfactometer. 2-Hexenal, hexanal, 2,4-hexadienal, benzaldehyde, nonanal, methyl salicylate and decanal were found in the leaf volatolomes of both the host and non-host plants in HS-SPME-GC-MS (Headspace-Solid phase micro extraction-Gas chromatography-Mass spectrometer). Pentene-3-one, 2-pentyl furan, 2,4-heptadienal, 2-octenal, 2-octenol and menthol were present only in the non-host plants. Fourteen rice unique compounds were also detected. The built-in PCA (Principal Component Analysis) and PLS-DA (Partial least squares-discriminant analysis) analysis in the MS-DIAL tool showed that the volatiles emitted from TN1 formed a cluster distinct from Echinochloa spp. and 2-octenal was identified as a unique compound. Olfactometer bioassays using synthetic compounds showed that rice unique compounds, like xylene, hexanal served as attractants whereas non-host unique compounds, like 2-pentylfuran, 2-octenal acted as repellent. The results indicate that the rice unique compounds xylene, hexanal along with other volatile compounds could be responsible for higher preference of YSB towards rice plants. Similarly, the non-host unique compounds 2-pentylfuran, 2-octenal could possibly be responsible for lower preference and defence against YSB. These compounds could be utilised for devising traps for YSB monitoring and management.

2.
Pest Manag Sci ; 79(10): 3656-3665, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37178406

RESUMO

BACKGROUND: The effectiveness of a biological control agent depends on how well it can control pests and how compatible it is with pesticides. Therefore, we reported the multigenerational effect of a commonly used insecticide, imidacloprid, on the functional response of a widely acclaimed egg parasitoid, Trichogramma chilonis Ishii, to different densities of the host Corcyra cephalonica Stainton eggs. The study investigated the outcomes of the median lethal concentration (LC50 ) and sublethal concentrations (LC5 , LC30 ), along with control treatments for five continuous generations (F1 to F5 ). RESULTS: The results showed that the F5 generation of LC30 , both of the F1 and F5 generations of LC50 , and the control all had a Type II functional response. A Type I functional response was exhibited for the F1 generation of LC30 and both generations of LC5 . The attack rate on host eggs treated with LC5 and LC30 did not change (decrease) with the shift in the type of functional response as compared to the control. A significant increase in the searching efficiency (a) was observed in the later generation (F5 ) under the exposure of LC5 and LC30 imidacloprid concentrations. A lower handling time (Th ) in both generations of the LC5 followed by LC30 treated individuals was observed when compared with the control and LC50 treatments. The per capita parasitization efficiency (1/Th ) and the rate of parasitization per handling time (a/Th ) were also considerably higher in both the generations of LC5 and LC30 than in the control and LC50 , thereby implying positive effects of imidacloprid on the parasitization potential of T. chilonis. CONCLUSION: Altogether, these multigenerational outcomes on the functional response of T. chilonis could be leveraged to control the intractable lepidopteran pests under the mild exposure of imidacloprid in integrated pest management (IPM) programs as well as in the mass rearing of the parasitoid, T. chilonis. © 2023 Society of Chemical Industry.


Assuntos
Inseticidas , Vespas , Humanos , Animais , Vespas/fisiologia , Neonicotinoides/farmacologia , Inseticidas/farmacologia , Nitrocompostos/farmacologia
3.
Life (Basel) ; 12(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36143326

RESUMO

Nilaparvata lugens is the main rice pest in India. Until now, the Indian N. lugens mitochondrial genome has not been sequenced, which is a very important basis for population genetics and phylogenetic evolution studies. An attempt was made to sequence two examples of the whole mitochondrial genome of N. lugens biotype 4 from the Indian population for the first time. The mitogenomes of N. lugens are 16,072 and 16,081 bp long with 77.50% and 77.45% A + T contents, respectively, for both of the samples. The mitochondrial genome of N. lugens contains 37 genes, including 13 protein-coding genes (PCGs) (cox1-3, atp6, atp8, nad1-6, nad4l, and cob), 22 transfer RNA genes, and two ribosomal RNA (rrnS and rrnL) subunits genes, which are typical of metazoan mitogenomes. However, both samples of N. lugens mitogenome in the present study retained one extra copy of the trnC gene. Additionally, we also found 93 bp lengths for the atp8 gene in both of the samples, which were 60-70 bp less than that of the other sequenced mitogenomes of hemipteran insects. The phylogenetic analysis of the 19 delphacids mitogenome dataset yielded two identical topologies when rooted with Ugyops sp. in one clade, and the remaining species formed another clade with P. maidis and M. muiri being sisters to the remaining species. Further, the genus Nilaparvata formed a separate subclade with the other genera (Sogatella, Laodelphax, Changeondelphax, and Unkanodes) of Delphacidae. Additionally, the relationship among the biotypes of N. lugens was recovered as the present study samples (biotype-4) were separated from the three biotypes reported earlier. The present study provides the reference mitogenome for N. lugens biotype 4 that may be utilized for biotype differentiation and molecular-aspect-based future studies of N. lugens.

4.
J Fungi (Basel) ; 8(4)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35448601

RESUMO

Sheath blight of rice is a destructive disease that could be calamitous to rice cultivation. The significant objective of this study is to contemplate the proteomic analysis of the high virulent and less virulent isolate of Rhizoctonia solani using a quantitative LC-MS/MS-based proteomic approach to identify the differentially expressed proteins promoting higher virulence. Across several rice-growing regions in Odisha, Eastern India, 58 Rhizoctonia isolates were obtained. All the isolates varied in their pathogenicity. The isolate RS15 was found to be the most virulent and RS22 was identified as the least virulent. The PCR amplification confirmed that the RS15 and RS22 belonged to the Rhizoctonia subgroup of AG1-IA with a specific primer. The proteomic information generated has been deposited in the PRIDE database with PXD023430. The virulent isolate consisted of 48 differentially abundant proteins, out of which 27 proteins had higher abundance, while 21 proteins had lower abundance. The analyzed proteins acquired functionality in fungal development, sporulation, morphology, pathogenicity, detoxification, antifungal activity, essential metabolism and transcriptional activities, protein biosynthesis, glycolysis, phosphorylation and catalytic activities in fungi. A Quantitative Real-Time PCR (qRT-PCR) was used to validate changes in differentially expressed proteins at the mRNA level for selected genes. The abundances of proteins and transcripts were positively correlated. This study provides the role of the proteome in the pathogenicity of R. solani AG1-IA in rice and underpins the mechanism behind the pathogen's virulence in causing sheath blight disease.

5.
Environ Sci Pollut Res Int ; 29(20): 30206-30216, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34997925

RESUMO

Triflumezopyrim (TMP), a mesoionic insecticide, is commonly used for controlling planthoppers in rice. However, the relationship between the TMP residue and toxicity against brown planthoppers (BPHs) has not been studied in detail. We are reporting the dissipation of TMP from rice plant and soil under field conditions. The median lethal dose and median lethal concentration were 0.036 ng per insect and 0.525 mg L-1, respectively. TMP at recommended dose (25 g a.i. ha-1) recorded 1.25 live BPH per hill as against 25.5 per hill in control at 14 days after treatment. TMP was considered to be harmless to the natural enemies, namely, Cyrtorhinus lividipennis and Lycosa pseudoannulata in the rice ecosystem. The residue of TMP from rice plant and soil was estimated using the QuEChERS method using three different doses (12.5, 25, and 50 g a.i. ha-1). The limit of quantitation (LOQ) of TMP in plant and soil was 5 µg kg-1 and 1 µg kg-1, respectively. The maximum content of TMP in soil was less than 1% that of plant content on day 1. The dissipation pattern of TMP both from plant and soil was better explained by the first-order double-exponential decay model (FODED) as compared to the first-order kinetic model. Overall, the half-lives of TMP were ranged from 2.21 to 3.02 days in plant tissues and 3.78 to 4.79 days in soil as per the FODED model. Based on the persistence and toxicity of TMP, we could conclude that TMP will be effective against BPH up to 7-10 days after application. Triflumezopyrim with reasonable persistence and high efficacy could be recommended as an alternate pesticide in BPH management in rice.


Assuntos
Hemípteros , Heterópteros , Oryza , Animais , Ecossistema , Oryza/química , Piridinas , Pirimidinonas , Solo
6.
PLoS One ; 16(8): e0256246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411169

RESUMO

Different factitious hosts were used to mass rear Trichogramma japonicum Ashmead in different parts of the globe because thorough details were lacking in both the laboratory and the field. The objective of this study was to compare, parasitoid, T. japonicum reared in different factitious hosts. Three commonly used factitious host eggs, Corcyra cephalonica (Stainton), Ephestia kuehniella Zeller and Sitotroga cerealella Olivier were tested under laboratory conditions and then in the field over a yellow stem borer, Scirpophaga incertulus (Walker) of rice. The highest parasitism by T. japonicum was observed on E. kuehniella eggs. The parasitoid's highest emergence (88.99%) was observed on S. cerealella eggs at 24 h exposure, whereas at 48 h it was on E. kuehniella eggs (94.66%). Trichogramma japonicum females that emerged from E. kuehniella eggs were significantly long-lived. The days of oviposition by hosts and the host species were significant individually, but not their interaction. Higher proportions of flying T. japonicum were observed when reared on E. kuehniella and C. cephalonica eggs. Field results showed that T. japonicum mass-reared on E. kuehniella showed higher parasitism of its natural host, S. incertulus eggs. Hence, by considering these biological characteristics and field results, E. kuehniella could be leveraged for the mass rearing of quality parasitoids of T. japonicum in India, the Asian continent and beyond.


Assuntos
Interações Hospedeiro-Parasita/genética , Himenópteros/genética , Lepidópteros/parasitologia , Controle Biológico de Vetores , Animais , Ovos/parasitologia , Feminino , Especificidade de Hospedeiro/genética , Himenópteros/patogenicidade , Índia , Larva/patogenicidade , Lepidópteros/genética , Mariposas/parasitologia , Oryza/parasitologia , Oviposição/genética , Vespas/patogenicidade
7.
Environ Sci Pollut Res Int ; 28(4): 4452-4462, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32944855

RESUMO

Green synthesis of silver nano-particles (AgNPs) from silver nitrate was carried out using purple-colored rice leaves' extracts containing higher phenols, anthocyanins, and flavonoids. The efficacy of synthesized AgNPs was tested against rice diseases and investigation was carried out to check negative effect of AgNPs on soil microbes. Substantial reduction of total anthocyanins, total phenols, and total flavonoids was observed in reaction mixture during AgNP formation indicating the role of secondary metabolites on AgNP formation and stabilization. Scanning electron microscopy coupled with energy-dispersive spectroscopic images and FTIR spectral analysis of AgNPs confirmed the presence of elemental silver encapped by biomolecules. The optimized reaction parameters for synthesis of AgNPs from silver nitrate were (a) 48 h of incubation, (b) 9:1 (v/v) 1 mM AgNO3:plant extract, and (c) room temperature at 20-30 °C. Zeta potential and hydrodynamic particle sizes of synthesized AgNPs were ranged between - 16.61 to - 29.45 mV and 36-107 nm, respectively, at different time of incubation. AgNPs could control effectively Rhizoctonia solani and Xanthomonas oryzae pv. Oryzae and Helminthosporium oryzae. AgNPs at higher concentration could cause negative effect on microbial biomass carbon and soil enzymes for distant future. But the negative effects of AgNP solution (10% of 1 mM AgNPs) were comparable to commercial fungicide, carbendazim. The synthesized AgNPs with desirable characters were effective against a number of disease-causing pathogens in rice, and it can be recommended as broad-spectrum pesticide.


Assuntos
Nanopartículas Metálicas , Oryza , Antibacterianos , Bipolaris , Química Verde , Extratos Vegetais , Folhas de Planta , Rhizoctonia , Xanthomonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...