Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(52): 8095-8098, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37293871

RESUMO

Our studies show Coomassie Brilliant Blue G-250 as a promising chemical chaperone that stabilises the α-helical native human insulin conformers, disrupting their aggregation. Furthermore, it also increases the insulin secretion. This multipolar effect coupled with its non-toxic nature could be useful for developing highly bioactive, targeted and biostable therapeutic insulin.


Assuntos
Insulinas , Corantes de Rosanilina , Humanos , Chaperonas Moleculares
2.
Int J Biol Macromol ; 241: 124470, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37088193

RESUMO

Aggregation of the human islets amyloid polypeptide, or hIAPP, is linked to ß-cell death in type II diabetes mellitus (T2DM). Different pancreatic ß-cell environmental variables such as pH, insulin and metal ions play a key role in controlling the hIAPP aggregation. Since insulin and hIAPP are co-secreted, it is known from numerous studies that insulin suppresses hIAPP fibrillation by preventing the initial dimerization process. On the other hand, zinc and copper each have an inhibitory impact on hIAPP fibrillation, but copper promotes the production of toxic oligomers. Interestingly, the insulin oligomeric equilibrium is controlled by the concentration of zinc ions when the effect of insulin and zinc has been tested together. Lower zinc concentrations cause the equilibrium to shift towards the monomer and dimer states of insulin, which bind to monomeric hIAPP and stop it from developing into a fibril. On the other hand, the combined effects of copper and insulin have not yet been studied. In this study, we have demonstrated how the presence of copper affects hIAPP aggregation and the toxicity of the resultant conformers with or without insulin. For this purpose, we have used a set of biophysical techniques, including NMR, fluorescence, CD etc., in combination with AFM and cell cytotoxicity assay. In the presence and/or absence of insulin, copper induces hIAPP to form structurally distinct stable toxic oligomers, deterring the fibrillation process. More specifically, the oligomers generated in the presence of insulin have slightly higher toxicity than those formed in the absence of insulin. This research will increase our understanding of the combined modulatory effect of two ß-cell environmental factors on hIAPP aggregation.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cobre/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Zinco/farmacologia , Zinco/química , Amiloide/química
3.
Proteins ; 88(12): 1648-1659, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32683793

RESUMO

Insulin has long been served as a model for protein aggregation, both due to the importance of aggregation in the manufacture of insulin and because the structural biology of insulin has been extensively characterized. Despite intensive study, details about the initial triggers for aggregation have remained elusive at the molecular level. We show here that at acidic pH, the aggregation of insulin is likely initiated by a partially folded monomeric intermediate. High-resolution structures of the partially folded intermediate show that it is coarsely similar to the initial monomeric structure but differs in subtle details-the A chain helices on the receptor interface are more disordered and the B chain helix is displaced from the C-terminal A chain helix when compared to the stable monomer. The result of these movements is the creation of a hydrophobic cavity in the center of the protein that may serve as nucleation site for oligomer formation. Knowledge of this transition may aid in the engineering of insulin variants that retain the favorable pharamacokinetic properties of monomeric insulin but are more resistant to aggregation.


Assuntos
Insulina/química , Pâncreas/metabolismo , Dobramento de Proteína , Multimerização Proteica , Animais , Bovinos , Interações Hidrofóbicas e Hidrofílicas , Insulina/metabolismo , Modelos Moleculares , Conformação Proteica
4.
Biochim Biophys Acta Proteins Proteom ; 1868(5): 140378, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32032759

RESUMO

Amyloidogenic disorders are currently rising as a global health issue, prompting more and more studies dedicated to the development of effective targeted therapeutics. The innate affinity of these amyloidogenic proteins towards the biomembranes adds further complexities to the systems. Our previous studies have shown that biologically active peptides can effectively target amyloidogenesis serving as an efficient therapeutic alternative in several amyloidogenic disorders. The structural uniqueness of the PWWP motif in the de novo designed heptapeptide, KR7 (KPWWPRR-NH2) was demonstrated to target insulin fiber elongation specifically. By working on insulin, an important model system in amyloidogenic studies, we gained several mechanistic insights into the inhibitory actions at the protein-peptide interface. Here, we report a second-generation non-toxic and serum stable cyclic peptide, based primarily on the PWWP motif that resulted in complete inhibition of insulin fibrillation both in the presence and absence of the model membranes. Using both low- and high-resolution spectroscopic techniques, we could delineate the specific mechanism of inhibition, at atomistic resolution. Our studies put forward an effective therapeutic intervention that redirects the default aggregation kinetics towards off-pathway fibrillation. Based on the promising results, this novel cyclic peptide can be considered an excellent lead to design pharmaceutical molecules against amyloidogenesis.


Assuntos
Amiloide/química , Insulina/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Multimerização Proteica/efeitos dos fármacos
5.
J Phys Chem B ; 124(7): 1125-1136, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31958230

RESUMO

Insulin, a simple polypeptide hormone with huge biological importance, has long been known to self-assemble in vitro and form amyloid-like fibrillar aggregates. Utilizing high-resolution NMR, Raman spectroscopy, and computational analysis, we demonstrate that the fluctuation of the carboxyl terminal (C-ter) residues of the insulin B-chain plays a key role in the growth phase of insulin aggregation. By comparing the insulin sourced from bovine, human, and the modified glargine (GI), we observed reduced aggregation propensity in the GI variant, resulting from two additional Arg residues at its C-ter. NMR analysis showed atomic contacts and residue-specific interactions, particularly the salt bridge and H-bond formed among the C-ter residues Arg31B, Lys29B, and Glu4A. These inter-residue interactions were reflected in strong nuclear Overhauser effects among Arg31BδH-Glu4AδH and Lys29BδHs-Glu4AδH in GI, as well as the associated downfield chemical shift of several A-chain amino terminal (N-ter) residues. The two additional Arg residues of GI, Arg31B and Arg32B, enhanced the stability of the GI native structure by strengthening the Arg31B, Lys29B, and Glu4A salt bridge, thus reducing extensive thermal distortion and fluctuation of the terminal residues. The high stability of the salt bridge retards tertiary collapse, a crucial biochemical event for oligomerization and subsequent fibril formation. Circular dichroism and Raman spectroscopic measurement also suggest slow structural distortion in the early phase of the aggregation of GI because of the restricted mobility of the C-ter residues as explained by NMR. In addition, the structural and dynamic parameters derived from molecular dynamics simulations of insulin variants highlight the role of residue-specific contacts in aggregation and amyloid-like fibril formation.


Assuntos
Insulina/química , Espectroscopia de Ressonância Magnética/métodos , Sais/química , Análise Espectral Raman/métodos , Sequência de Aminoácidos , Dicroísmo Circular , Cinética , Conformação Proteica
6.
ACS Chem Neurosci ; 10(5): 2229-2236, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30855940

RESUMO

Altered intestinal permeability has been correlated with Parkinson's pathophysiology in the enteric nervous system, before manifestations in the central nervous system (CNS). The inflammatory endotoxin or lipopolysaccharide (LPS) released by gut bacteria is known to modulate α-synuclein amyloidogenesis through the formation of intermediate nucleating species. Here, biophysical techniques in conjunction with microscopic images revealed the molecular interaction between lipopolysaccharide and α-synuclein that induce rapid nucleation events. This heteromolecular interaction stabilizes the α-helical intermediates in the α-synuclein aggregation pathway. Multitude NMR studies probed the residues involved in the LPS-binding structural motif that modulates the nucleating forms, affecting the cellular internalization and associated cytotoxicity. Collectively, our data characterizes this heteromolecular interaction associated with an alternative pathway in Parkinson's disease progression.


Assuntos
Microbioma Gastrointestinal/fisiologia , Lipopolissacarídeos/farmacologia , Agregados Proteicos/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Linhagem Celular Tumoral , Sistema Nervoso Entérico/metabolismo , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Permeabilidade
7.
ACS Omega ; 4(2): 4206-4220, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30847433

RESUMO

Insulin and lysozyme share the common features of being prone to aggregate and having biomedical importance. Encapsulating lysozyme and insulin in micellar nanoparticles probably would prevent aggregation and facilitate oral drug delivery. Despite the vivid structural knowledge of lysozyme and insulin, the environment-dependent oligomerization (dimer, trimer, and multimer) and associated structural dynamics remain elusive. The knowledge of the intra- and intermolecular interaction profiles has cardinal importance for the design of encapsulation protocols. We have employed various biophysical methods such as NMR spectroscopy, X-ray crystallography, Thioflavin T fluorescence, and atomic force microscopy in conjugation with molecular modeling to improve the understanding of interaction dynamics during homo-oligomerization of lysozyme (human and hen egg) and insulin (porcine, human, and glargine). The results obtained depict the atomistic intra- and intermolecular interaction details of the homo-oligomerization and confirm the propensity to form fibrils. Taken together, the data accumulated and knowledge gained will further facilitate nanoparticle design and production with insulin or lysozyme-related protein encapsulation.

8.
J Biol Chem ; 291(45): 23545-23556, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27679488

RESUMO

The aggregation of insulin into amyloid fibers has been a limiting factor in the development of fast acting insulin analogues, creating a demand for excipients that limit aggregation. Despite the potential demand, inhibitors specifically targeting insulin have been few in number. Here we report a non-toxic and serum stable-designed heptapeptide, KR7 (KPWWPRR-NH2), that differs significantly from the primarily hydrophobic sequences that have been previously used to interfere with insulin amyloid fibrillation. Thioflavin T fluorescence assays, circular dichroism spectroscopy, and one-dimensional proton NMR experiments suggest KR7 primarily targets the fiber elongation step with little effect on the early oligomerization steps in the lag time period. From confocal fluorescence and atomic force microscopy experiments, the net result appears to be the arrest of aggregation in an early, non-fibrillar aggregation stage. This mechanism is noticeably different from previous peptide-based inhibitors, which have primarily shifted the lag time with little effect on later stages of aggregation. As insulin is an important model system for understanding protein aggregation, the new peptide may be an important tool for understanding peptide-based inhibition of amyloid formation.


Assuntos
Amiloide/antagonistas & inibidores , Hipoglicemiantes/metabolismo , Insulina/metabolismo , Oligopeptídeos/farmacologia , Agregados Proteicos/efeitos dos fármacos , Sequência de Aminoácidos , Amiloide/metabolismo , Amiloide/ultraestrutura , Dicroísmo Circular , Polarização de Fluorescência , Humanos , Interações Hidrofóbicas e Hidrofílicas , Hipoglicemiantes/química , Insulina/química , Microscopia de Força Atômica , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...