Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(7): e18135, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37539176

RESUMO

We study the Sombor index and the Sombor spectral properties of chain graphs. In particular, an explicit formula for the Sombor index is given, the Sombor eigenvalues are discussed, bounds on the largest and the smallest Sombor eigenvalues are presented, chain graphs with the simple Sombor eigenvalue are characterized, formulae for the Frobenius norm and the determinant of the Sombor quotient matrix of chain graphs are given, the Sombor spread bound and the Sombor energy bounds are presented along with the characterization of graphs attaining them.

2.
Molecules ; 27(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36235303

RESUMO

Let G be a simple graph with the vertex set V={v1,…,vn} and denote by dvi the degree of the vertex vi. The modified Sombor index of G is the addition of the numbers (dvi2+dvj2)-1/2 over all of the edges vivj of G. The modified Sombor matrix AMS(G) of G is the n by n matrix such that its (i,j)-entry is equal to (dvi2+dvj2)-1/2 when vi and vj are adjacent and 0 otherwise. The modified Sombor spectral radius of G is the largest number among all of the eigenvalues of AMS(G). The sum of the absolute eigenvalues of AMS(G) is known as the modified Sombor energy of G. Two graphs with the same modified Sombor energy are referred to as modified Sombor equienergetic graphs. In this article, several bounds for the modified Sombor index, the modified Sombor spectral radius, and the modified Sombor energy are found, and the corresponding extremal graphs are characterized. By using computer programs (Mathematica and AutographiX), it is found that there exists only one pair of the modified Sombor equienergetic chemical graphs of an order of at most seven. It is proven that the modified Sombor energy of every regular, complete multipartite graph is 2; this result gives a large class of the modified Sombor equienergetic graphs. The (linear, logarithmic, and quadratic) regression analyses of the modified Sombor index and the modified Sombor energy together with their classical versions are also performed for the boiling points of the chemical graphs of an order of at most seven.

3.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144784

RESUMO

A topological index is a number derived from a molecular structure (i.e., a graph) that represents the fundamental structural characteristics of a suggested molecule. Various topological indices, including the atom-bond connectivity index, the geometric-arithmetic index, and the Randic index, can be utilized to determine various characteristics, such as physicochemical activity, chemical activity, and thermodynamic properties. Meanwhile, the non-commuting graph ΓG of a finite group G is a graph where non-central elements of G are its vertex set, while two different elements are edge connected when they do not commute in G. In this article, we investigate several topological properties of non-commuting graphs of finite groups, such as the Harary index, the harmonic index, the Randic index, reciprocal Wiener index, atomic-bond connectivity index, and the geometric-arithmetic index. In addition, we analyze the Hosoya characteristics, such as the Hosoya polynomial and the reciprocal status Hosoya polynomial of the non-commuting graphs over finite subgroups of SL(2,C). We then calculate the Hosoya index for non-commuting graphs of binary dihedral groups.

4.
Molecules ; 27(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36144814

RESUMO

Assume that G is a finite group. The power graph P(G) of G is a graph in which G is its node set, where two different elements are connected by an edge whenever one of them is a power of the other. A topological index is a number generated from a molecular structure that indicates important structural properties of the proposed molecule. Indeed, it is a numerical quantity connected with the chemical composition that is used to correlate chemical structures with various physical characteristics, chemical reactivity, and biological activity. This information is important for identifying well-known chemical descriptors based on distance dependence. In this paper, we study Hosoya properties, such as the Hosoya polynomial and the reciprocal status Hosoya polynomial of power graphs of various finite cyclic and non-cyclic groups of order pq and pqr, where p,q and r(p≥q≥r) are prime numbers.


Assuntos
Algoritmos , Estrutura Molecular
5.
Front Plant Sci ; 13: 852704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651777

RESUMO

Arsenic (As) stress provokes various toxic effects in plants that disturbs its photosynthetic potential and hampers growth. Ethylene and selenium (Se) have shown regulatory interaction in plants for metal tolerance; however, their synergism in As tolerance through modification of the antioxidant enzymes and hormone biosynthesis needs further elaboration. With this in view, we investigated the impact of ethylene and Se in the protection of photosynthetic performance against As stress in mustard (Brassica juncea L.). Supplementation with ethephon (2-chloroethylphosphonic acid; ethylene source) and/or Se allayed the negative impact of As-induced toxicity by limiting As content in leaves, enhancing the antioxidant defense system, and decreasing the accumulation of abscisic acid (ABA). Ethylene plus Se more prominently regulated stomatal behavior, improved photosynthetic capacity, and mitigated As-induced effects. Ethephon in the presence of Se decreased stress ethylene formation and ABA accumulation under As stress, resulting in improved photosynthesis and growth through enhanced reduced glutathione (GSH) synthesis, which in turn reduced the oxidative stress. In both As-stressed and non-stressed plants treated with ethylene action inhibitor, norbornadiene, resulted in increased ABA and oxidative stress with reduced photosynthetic activity by downregulating expression of ascorbate peroxidase and glutathione reductase, suggesting the involvement of ethylene in the reversal of As-induced toxicity. These findings suggest that ethephon and Se induce regulatory interaction between ethylene, ABA accumulation, and GSH metabolism through regulating the activity and expression of antioxidant enzymes. Thus, in an economically important crop (mustard), the severity of As stress could be reduced through the supplementation of both ethylene and Se that coordinate for maximum stress alleviation.

6.
Environ Sci Pollut Res Int ; 29(32): 49029-49049, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35212900

RESUMO

This study aimed to test the efficiency of ethylene (Eth; 200 µL L-1 ethephon) in presence or absence of nitrogen (N; 80 mg N kg-1 soil) in protecting photosynthetic apparatus from copper (Cu; 100 mg Cu kg-1 soil) stress in mustard (Brassica juncea L.) and to elucidate the physio-biochemical modulation for Eth plus N-induced Cu tolerance. Elevated Cu-accrued reductions in photosynthesis and growth were accompanied by significantly higher Cu accumulation in leaves and oxidative stress with reduced assimilation of N and sulfur (S). Ethylene in coordination with N considerably reduced Cu accumulation, lowered lipid peroxidation, lignin accumulation, and contents of reactive oxygen species (hydrogen peroxide, H2O2, and superoxide anion, O2•-), and mitigated the negative effect of Cu on N and S assimilation, accumulation of non-protein thiols and phytochelatins, enzymatic, and non-enzymatic antioxidants (activity of ascorbate peroxidase, APX, and glutathione reductase, GR; content of reduced glutathione, GSH, and ascorbate, AsA), cell viability, photosynthesis, and growth. Overall, the effect of ethylene-nitrogen synergism was evident on prominently mitigating Cu stress and protecting photosynthesis. The approach of supplementing ethylene with N may be used as a potential tool to restrain Cu stress, and protect photosynthesis and growth of mustard plants.


Assuntos
Antioxidantes , Mostardeira , Antioxidantes/metabolismo , Cobre/metabolismo , Etilenos/metabolismo , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Nitrogênio/metabolismo , Estresse Oxidativo , Fotossíntese , Solo
7.
Entropy (Basel) ; 24(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35205508

RESUMO

Suppose G is a finite group. The power graph represented by P(G) of G is a graph, whose node set is G, and two different elements are adjacent if and only if one is an integral power of the other. The Hosoya polynomial contains much information regarding graph invariants depending on the distance. In this article, we discuss the Hosoya characteristics (the Hosoya polynomial and its reciprocal) of the power graph related to an algebraic structure formed by the symmetries of regular molecular gones. As a consequence, we determined the Hosoya index of the power graphs of the dihedral and the generalized groups. This information is useful in determining the renowned chemical descriptors depending on the distance. The total number of matchings in a graph Γ is known as the Z-index or Hosoya index. The Z-index is a well-known type of topological index, which is popular in combinatorial chemistry and can be used to deal with a variety of chemical characteristics in molecular structures.

8.
Plant Physiol Biochem ; 155: 523-534, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32836198

RESUMO

Phytotoxicity of metals constraints plants health, metabolism and productivity. The sustainable approaches for minimizing major metals-accrued phytotoxicity have been least explored. The gasotransmitters signaling molecules such as nitric oxide (NO) and hydrogen sulfide (H2S) play a significant role in the mitigation of major consequences of metals stress. Versatile gaseous signaling molecules, NO and H2S are involved in the regulation of various physiological processes in plants and their tolerance to abiotic stresses. However, literature available on NO or H2S stand alone, and the major insights into the roles of NO and/or H2S in plant tolerance, particularly to metals, remained unclear. Given above, this paper aimed to (a) briefly overview metals and highlight their major phytotoxicity; (b) appraises literature reporting potential mechanisms underlying the roles of NO and H2S in plant-metal tolerance; (c) crosstalk on NO and H2S in relation to plant metal tolerance. Additionally, major aspects so far unexplored in the current context have also been mentioned.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Metais/toxicidade , Óxido Nítrico/metabolismo , Plantas , Estresse Fisiológico , Gasotransmissores/fisiologia
9.
Front Plant Sci ; 11: 675, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547583

RESUMO

Phytotoxicity of metals significantly contributes to the major loss in agricultural productivity. Among all the metals, copper (Cu) is one of essential metals, where it exhibits toxicity only at its supra-optimal level. Elevated Cu levels affect plants developmental processes from initiation of seed germination to the senescence, photosynthetic functions, growth and productivity. The use of plant growth regulators/phytohormones and other signaling molecules is one of major approaches for reversing Cu-toxicity in plants. Nitric oxide (NO) is a versatile and bioactive gaseous signaling molecule, involved in major physiological and molecular processes in plants. NO modulates responses of plants grown under optimal conditions or to multiple stress factors including elevated Cu levels. The available literature in this context is centered mainly on the role of NO in combating Cu stress with partial discussion on underlying mechanisms. Considering the recent reports, this paper: (a) overviews Cu uptake and transport; (b) highlights the major aspects of Cu-toxicity on germination, photosynthesis, growth, phenotypic changes and nutrient-use-efficiency; (c) updates on NO as a major signaling molecule; and (d) critically appraises the Cu-significance and mechanisms underlying NO-mediated alleviation of Cu-phytotoxicity. The outcome of the discussion may provide important clues for future research on NO-mediated mitigation of Cu-phytotoxicity.

10.
Plants (Basel) ; 9(6)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575782

RESUMO

This investigation tested the efficiency of nitric oxide (NO) in alleviation of Cu-induced adverse impacts on seed germination and photosynthesis in Indian mustard (Brassica juncea L.). Pre-treatment of B. juncea seeds with sodium nitroprusside (SNP; NO donor) significantly improved the seed germination rate and also alleviated Cu-accrued oxidative stress. However, in the absence of NO, Cu caused a higher reduction in seed germination rate. The presence of NO strengthened the antioxidant defense system (glutathione reductase, ascorbate peroxidase, and superoxide dismutase) and thereby sustained the lower lipid peroxidation, reduced H2O2 content, and thiobarbituric acid reactive substances in Cu-exposed seeds. NO pre-treated seeds also retained a higher amylase activity and exhibited an improved seed germination rate. This effect of NO under Cu stress was also seen in plants originated from the NO pre-treated seeds, where the role of NO pre-treatment was reflected in the improved photosynthetic potential of B. juncea. Overall, NO pre-treatment not only improved the germination rate in seeds but also carried its effects in the grown seedlings evidenced as improved photosynthesis and growth. Potential mechanisms involved in the action of NO pre-treatment included NO-mediated significant strengthening of the antioxidant defense system and decreases in Cu-caused oxidative stress parameters.

11.
Chembiochem ; 19(7): 723-735, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29363254

RESUMO

One of the crucial regulators of embryonic patterning and tissue development is the Hedgehog-glioma (Hh-Gli) signalling pathway; its uncontrolled activation has been implicated in different types of cancer in adult tissues. Primary cilium is one of the important factors required for the activation of Hh signalling, as it brings the critical components together for key protein-protein interactions required for Hh pathway regulation. Most of the synthetic and natural small molecule modulators of the pathway primarily antagonise Smoothened (Smo) or other effectors like Hh ligand or Gli. Here, we report a previously described Hh antagonist, with a pyrimidine-indole hybrid (PIH) core structure, as an inhibitor of ciliogenesis. The compound is unique in its mode of action, as it shows perturbation of microtubule dynamics in both cell-based assays and in vivo systems (zebrafish embryos). Further studies revealed that the probable targets are α-tubulin and its acetylated form, found in the cytoplasm and primary cilia. PIH also showed axonal defasiculation in developing zebrafish embryos. We thus propose that PIH antagonises Hh signalling by repressing cilia biogenesis and disassembling α-tubulin from its stabilised form.


Assuntos
Cílios/efeitos dos fármacos , Proteínas Hedgehog/antagonistas & inibidores , Indóis/farmacologia , Microtúbulos/efeitos dos fármacos , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Células CHO , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cricetulus , Humanos , Indóis/síntese química , Camundongos , Simulação de Acoplamento Molecular , Células NIH 3T3 , Pirimidinas/síntese química , Suínos , Tubulina (Proteína)/metabolismo , Peixe-Zebra
12.
Arch Pharm (Weinheim) ; 343(2): 108-13, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20108268

RESUMO

A novel series of 2-substituted-quinazolin-4(3H)-ones were synthesized by reacting 3,5-disubstituted-anthranilic acid with acetic anhydride/benzoyl chloride, which were further reacted with different primary amines to obtain 2,6,8-substituted-quinazolin-4(3H)-ones 6a-f, 7, 8. All the synthesized compounds were characterized and screened for analgesic and anti-inflammatory activities. Compounds 6,8-dibromo-2-phenyl-3-(4'-carboxyl phenyl)quinazolin-4(3H)-one 7 and 6,8-dibromo-2-phenyl-3-(2'-phenylethanoic acid)quinazolin-4(3H)-one 8 displayed good analgesic and anti-inflammatory activity in comparison to the reference standards acetyl salicylic acid and indomethacin, respectively.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Quinazolinas/farmacologia , Analgésicos/síntese química , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Aspirina/farmacologia , Modelos Animais de Doenças , Feminino , Indometacina/farmacologia , Inflamação/tratamento farmacológico , Masculino , Camundongos , Dor/tratamento farmacológico , Medição da Dor , Quinazolinas/síntese química , Relação Estrutura-Atividade
13.
Eur J Med Chem ; 44(5): 2328-33, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18603337

RESUMO

In the present study, a series of novel Schiff bases were synthesized by condensation of 3-amino-6,8-dibromo-2-phenylquinazolin-4(3H)-ones with different aromatic aldehydes via cyclized intermediate 6,8-dibromo-2-phenyl benzoxazin-4-one. The chemical structures were confirmed by means of IR, (1)H NMR, (13)C NMR, Mass spectral and Elemental analysis. These compounds were screened for anti-bacterial (Staphylococcus aureus ATCC-9144, Staphylococcus epidermidis ATCC-155, Micrococcus luteus ATCC-4698, Bacillus cereus ATCC-11778, Escherichia coli ATCC-25922, Pseudomonas aeruginosa ATCC-2853, and Klebsiella pneumoniae ATCC-11298) and anti-fungal (Aspergillus niger ATCC-9029 and Aspergillus fumigatus ATCC-46645) activities by paper disc diffusion technique. The minimum inhibitory concentrations (MICs) of the compounds were also determined by agar streak dilution method. Among the synthesized compounds 3-(3,4,5-trimethoxybenzylideneamino)-6,8-dibromo-2-phenylquinazolin-4(3H)-one 10 was found to be the most potent anti-microbial activity with MICs of 18.9, 19.1, 18.8, 21.7, 18.2, 19.3, 16.7, 8.6 and 10.1 microg/ml against above mentioned respective strains. Compounds were found to exhibit more anti-fungal than anti-bacterial activity.


Assuntos
Antibacterianos/síntese química , Antifúngicos/síntese química , Quinazolinonas/síntese química , Bases de Schiff/síntese química , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Quinazolinonas/farmacologia , Bases de Schiff/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...