Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37948140

RESUMO

Contact tracing is an effective method for mitigating the infectious diseases spread and it played a crucial role in reducing COVID-19 outbreak. Since the pandemic, there has been an increased concern regarding people's health in hospital and office settings, as these limited air exchange spaces provide a conductive medium for virus spread. Various technologies were used to recognize close contacts autonomously, in addition, multiple machine learning attempts were carried out to determine proximity in contact tracing. This study, however, proposes a unique concept in contact tracing: forecasting future close contact prior to occurrence in order to regulate and control it rather than tracking past occurrences. For our research, we constructed a completely new real-life dataset that was collected during the pandemic in a hospital infectious ward (Alfred Hospital, Melbourne, Australia) utilizing a Bluetooth Low Energy (BLE) Internet of Things (IoT) system. Our prediction technique considers two types of environments: single transceiver environments and multiple transceivers settings, these transceivers record the nearby tags' BLE received signal strength indicator (RSSI) values. The system employs mathematical models and supervised machine learning (ML) algorithms to solve regression and classification problems for workers' pattern recognition within the environment. The output is compared using different metrics, such as efficiency, which reached more than 80%, root mean square errors and mean absolute errors which were as low as 2.4 and 1.2 respectively in some models.

2.
Infect Dis Health ; 27(2): 66-70, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34810151

RESUMO

BACKGROUND: The hospital environment is characterised by a dense network of interactions between healthcare workers (HCWs) and patients. As highlighted by the coronavirus pandemic, this represents a risk for disease transmission and a challenge for contact tracing. We aimed to develop and pilot an automated system to address this challenge and describe contacts between HCWs and patients. METHODS: We developed a bespoke Bluetooth Low Energy (BLE) system for the hospital environment with anonymous tags worn by HCWs and fixed receivers at patient room doors. Proximity between wearable tags inferred contact between HCWs. Tag-receiver interactions inferred patient room entry and exit by HCWs. We performed a pilot study in four negative pressure isolation rooms from 13 April to 18 April 2021. Nursing and medical staff who consented to participate were able to collect one of ten wearable BLE tags during their shift. RESULTS: Over the four days, when divided by shift times, 27 nursing tags and 3 medical tags were monitored. We recorded 332 nurse-nurse interactions, for a median duration of 58 s [interquartile range (IQR): 39-101]. We recorded 45 nursing patient room entries, for a median 7 min [IQR: 3-21] of patient close contact. Patient close contact was shorter in rooms on airborne precautions, compared to those not o transmission-based precautions. CONCLUSION: This pilot study supported the functionality of this approach to quantify HCW proximity networks and patient close contact. With further refinements, the system could be scaled-up to support contact tracing in high-risk environments.


Assuntos
Controle de Infecções , Dispositivos Eletrônicos Vestíveis , Estudos de Viabilidade , Pessoal de Saúde , Humanos , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...