Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753109

RESUMO

The hemodynamics in Fontan patients with single ventricles rely on favorable flow and energetics, especially in the absence of a subpulmonary ventricle. Age-related changes in energetics for extracardiac and lateral tunnel Fontan procedures are not well understood. Vorticity (VOR) and viscous dissipation rate (VDR) are two descriptors that can provide insights into flow dynamics and dissipative areas in Fontan pathways, potentially contributing to power loss. This study examined power loss and its correlation with spatio-temporal flow descriptors (vorticity and VDR). Data from 414 Fontan patients were used to establish a relationship between the superior vena cava (SVC) to inferior vena cava (IVC) flow ratio and age. Computational flow modeling was conducted for both extracardiac conduits (ECC, n = 16) and lateral tunnels (LT, n = 25) at different caval inflow ratios of 2, 1, and 0.5 that corresponded with ages 3, 8, and 15+. In both cohorts, vorticity and VDR correlated well with PL, but ECC cohort exhibited a slightly stronger correlation for PL-VOR (>0.83) and PL-VDR (>0.89) than that for LT cohort (>0.76 and > 0.77, respectively) at all ages. Our data also suggested that absolute and indexed PL increase (p < 0.02) non-linearly as caval inflow changes with age and are highly patient-specific. Comparison of indexed power loss between our ECC and LT cohort showed that while ECC had a slightly higher median PL for all 3 caval inflow ratio examined (3.3, 8.3, 15.3) as opposed to (2.7, 7.6, 14.8), these differences were statistically non-significant. Lastly, there was a consistent rise in pressure gradient across the TCPC with age-related increase in IVC flows for both ECC and LT Fontan patient cohort. Our study provided hemodynamic insights into Fontan energetics and how they are impacted by age-dependent change in caval inflow. This workflow may help assess the long-term sustainability of the Fontan circulation and inform the design of more efficient Fontan conduits.

2.
medRxiv ; 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37732201

RESUMO

Background: The Fontan operation is a palliative technique for patients born with single ventricle heart disease. The superior vena cava (SVC), inferior vena cava (IVC), and hepatic veins are connected to the pulmonary arteries in a total cavopulmonary connection by an extracardiac (EC) conduit or a lateral tunnel (LT) connection. A balanced hepatic flow distribution (HFD) to both lungs is essential to prevent pulmonary arteriovenous malformations and cyanosis. HFD is highly dependent on the local hemodynamics. Objective: The effect of age-related changes in caval inflows on HFD was evaluated using cardiac MRI (CMR) data and patient-specific computational fluid dynamics (CFD) modeling. Methods: SVC and IVC flow from 414 Fontan patients were collected to establish a relationship between SVC:IVC flow ratio and age. CFD modeling was performed in 60 (30 EC and 30 LT) patient models to quantify the HFD that corresponded to patient ages of 3, 8, and 15 years, respectively. Results: SVC:IVC flow ratio inverted at ∼8 years of age, indicating a clear shift to lower body flow predominance. Our data showed that variation of HFD in response to age-related changes in caval inflows (SVC:IVC = 2,1, and 0.5 corresponded to ages 3, 8, and 15+ respectively) was not significant for EC but statistically significant for LT cohorts. For all three caval inflow ratios, a positive correlation existed between the IVC flow distribution to both the lungs and the HFD. However, as the SVC:IVC ratio changed from 2→0.5 (age 3→15+), the correlation's strength decreased from 0.87→0.64, due to potential flow perturbation as IVC flow momentum increased. Conclusion: Our analysis provided quantitative insights into the impact of the changing caval inflows on Fontan's long-term HFD, highlighting the importance of including SVC:IVC variations over time to understand Fontan's long-term hemodynamics. These findings broaden our understanding of Fontan hemodynamics and patient outcomes. Clinical Perspective: With improvement in standard of care and management of single ventricle patients with Fontan physiology, the population of adults with Fontan circulation is increasing. Consequently, there is a clinical need to comprehend the impact of patient growth on Fontan hemodynamics. Using CMR data, we were able to quantify the relationship between changing caval inflows and somatic growth. We then used patient-specific computational flow modeling to quantify how this relationship affected the distribution of long-term hepatic flow in extracardiac and lateral tunnel Fontan types. Our findings demonstrated the significance of including SVC:IVC changes over time in CFD modeling to learn more about the long-term hemodynamics of Fontan. Fontan surgical approaches are increasingly planned and optimized using computational flow modeling. For a patient undergoing a Fontan procedure, the workflow presented in this study that takes into account the variations in Caval inflows over time can aid in predicting the long-term hemodynamics in a planned Fontan pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...