Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AoB Plants ; 16(2): plae018, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38601216

RESUMO

Humic acids have been widely used for centuries to enhance plant growth and productivity. The beneficial effects of humic acids have been attributed to different functional groups and phytohormone-like compounds enclosed in macrostructure. However, the mechanisms underlying the plant growth-promoting effects of humic acids are only partially understood. We hypothesize that the bio-stimulatory effect of humic acids is mainly due to the modulation of innate pathways of auxin and cytokinin biosynthesis in treated plants. A physiological investigation along with molecular characterization was carried out to understand the mechanism of bio-stimulatory effects of humic acid. A gene expression analysis was performed for the genes involved in auxin and cytokinin biosynthesis pathways in wheat seedlings. Furthermore, Arabidopsis thaliana transgenic lines generated by fusing the auxin-responsive DR5 and cytokinin-responsive ARR5 promoter to ß-glucuronidase (GUS) reporter were used to study the GUS expression analysis in humic acid treated seedlings. This study demonstrates that humic acid treatment improved the shoot and root growth of wheat seedlings. The expression of several genes involved in auxin (Tryptophan Aminotransferase of Arabidopsis and Gretchen Hagen 3.2) and cytokinin (Lonely Guy3) biosynthesis pathways were up-regulated in humic acid-treated seedlings compared to the control. Furthermore, GUS expression analysis showed that bioactive compounds of humic acid stimulate endogenous auxin and cytokinin-like activities. This study is the first report in which using ARR5:GUS lines we demonstrate the biostimulants activity of humic acid.

2.
Int J Mol Sci ; 22(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671243

RESUMO

Brown alga Ectocarpus sp. belongs to Phaeophyceae, a class of macroalgae that evolved complex multicellularity. Ectocarpus sp. is a dominant seaweed in temperate regions, abundant mostly in the intertidal zones, an environment with high levels of abiotic stresses. Previous transcriptomic analysis of Ectocarpus sp. revealed several genes consistently induced by various abiotic stresses; one of these genes is Esi0017_0056, which encodes a protein with unknown function. Bioinformatics analyses indicated that the protein encoded by Esi0017_0056 is soluble and monomeric. The protein was successfully expressed in Escherichia coli,Arabidopsis thaliana and Nicotiana benthamiana. In A. thaliana the gene was expressed under constitutive and stress inducible promoters which led to improved tolerance to high salinity and temperature stresses. The expression of several key abiotic stress-related genes was studied in transgenic and wild type A. thaliana by qPCR. Expression analysis revealed that genes involved in ABA-induced abiotic stress tolerance, K+ homeostasis, and chaperon activities were significantly up-regulated in the transgenic line. This study is the first report in which an unknown function Ectocarpus sp. gene, highly responsive to abiotic stresses, was successfully expressed in A. thaliana, leading to improved tolerance to salt and temperature stress.


Assuntos
Adaptação Fisiológica , Proteínas de Algas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Temperatura Alta , Phaeophyceae/metabolismo , Salinidade , Estresse Fisiológico , Adaptação Fisiológica/genética , Proteínas de Algas/química , Proteínas de Algas/genética , Arabidopsis/crescimento & desenvolvimento , Eletrólitos/metabolismo , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Plântula/genética , Estresse Fisiológico/genética , Nicotiana/metabolismo
3.
Plants (Basel) ; 9(11)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171775

RESUMO

Mannitol is abundant in a wide range of organisms, playing important roles in biotic and abiotic stress responses. Nonetheless, mannitol is not produced by a vast majority of plants, including many important crop plants. Mannitol-producing transgenic plants displayed improved tolerance to salt stresses though mannitol production was rather low, in the µM range, compared to mM range found in plants that innately produce mannitol. Little is known about the molecular mechanisms underlying salt tolerance triggered by low concentrations of mannitol. Reported here is the production of mannitol in Arabidopsis thaliana, by expressing two mannitol biosynthesis genes from the brown alga Ectocarpus sp. strain Ec32. To date, no brown algal genes have been successfully expressed in land plants. Expression of mannitol-1-phosphate dehydrogenase and mannitol-1-phosphatase genes was associated with the production of 42.3-52.7 nmol g-1 fresh weight of mannitol, which was sufficient to impart salinity and temperature stress tolerance. Transcriptomics revealed significant differences in the expression of numerous genes, in standard and salinity stress conditions, including genes involved in K+ homeostasis, ROS signaling, plant development, photosynthesis, ABA signaling and secondary metabolism. These results suggest that the improved tolerance to salinity stress observed in transgenic plants producing mannitol in µM range is achieved by the activation of a significant number of genes, many of which are involved in priming and modulating the expression of genes involved in a variety of functions including hormone signaling, osmotic and oxidative stress, and ion homeostasis.

4.
BMC Plant Biol ; 20(1): 113, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164536

RESUMO

BACKGROUND: Powdery mildew (PM) is an important disease of pea that reduce yield. Ascophyllum nodosum extract (ANE) and chitosan (CHT) are biostimulants used to improve plant health. Efficacy of ANE and CHT was assessed individually and in combination against pea powdery mildew. RESULTS: Combined applications of ANE and CHT had a significant inhibitory effect on pathogen development and it reduced disease severity to 35%, as compared to control (90.5%). The combination of ANE and CHT enhanced the activity of plant defense enzymes; phenylalanine ammonia lyases (PAL), peroxidase (PO) and production of reactive oxygen species (ROS) and hydrogen peroxide (H2O2). Further, the treatment increased the expression of a number of plant defense genes in jasmonic acid (JA) signaling pathway such as LOX1 and COI and salicylic acid (SA)-mediated signaling pathway such as NPR1 and PR1. Other genes involved in defense mechanisms like NADPH oxidase and C4H were also upregulated by the combination treatment. CONCLUSION: The combination of ANE and CHT suppresses pea powdery mildew largely by modulating JA and SA-mediated signaling pathways.


Assuntos
Ascomicetos/fisiologia , Ascophyllum/química , Quitosana/farmacologia , Pisum sativum/imunologia , Doenças das Plantas/prevenção & controle , Imunidade Vegetal , Quitosana/administração & dosagem , Pisum sativum/efeitos dos fármacos , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...