Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 254, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302755

RESUMO

BACKGROUND: The common bean (Phaseolus vulgaris) has become the food of choice owing to its wealthy nutritional profile, leading to a considerable increase in its cultivation worldwide. However, anthracnose has been a major impediment to production and productivity, as elite bean cultivars are vulnerable to this disease. To overcome barriers in crop production, scientists worldwide are working towards enhancing the genetic diversity of crops. One way to achieve this is by introducing novel genes from related crops, including landraces like KRC 8. This particular landrace, found in the North Western Himalayan region, has shown adult plant resistance against anthracnose and also possesses a recessive resistance gene. METHODS AND RESULTS: In this study, a population of 179 F2:9 RIL individuals (Jawala × KRC 8) was evaluated at both phenotypic and genotypic levels using over 830 diverse molecular markers to map the resistance gene present in KRC 8. We have successfully mapped a resistance gene to chromosome Pv01 using four SSR markers, namely IAC 238, IAC 235, IAC 259, and BM 146. The marker IAC 238 is closely linked to the gene with a distance of 0.29 cM, while the other markers flank the recessive resistance gene at 10.87 cM (IAC 259), 17.80 cM (BM 146), and 25.22 cM (IAC 235). Previously, a single recessive anthracnose resistance gene (co-8) has been reported in the common bean accession AB 136. However, when we performed PCR amplification with our tightly linked marker IAC 238, we got different amplicons in AB 136 and KRC 8. Interestingly, the susceptible cultivar Jawala produced the same amplicon as AB 136. This observation indicated that the recessive gene present in KRC 8 is different from co-8. As the gene is located far away from the Co-1 locus, we suggest naming the recessive gene co-Indb/co-19. Fine mapping of co-Indb in KRC 8 may provide new insights into the cloning and characterization of this recessive gene so that it can be incorporated into future bean improvement programs. Further, the tightly linked marker IAC 238 can be utilized in marker assisted introgression in future bean breeding programs. CONCLUSION: The novel co-Indb gene present in Himalayan landrace KRC 8, showing adult plant resistance against common bean anthracnose, is independent from all the resistance genes previously located on chromosome Pv01.


Assuntos
Phaseolus , Humanos , Mapeamento Cromossômico , Marcadores Genéticos , Phaseolus/genética , Melhoramento Vegetal , Genótipo , Doenças das Plantas/genética , Resistência à Doença/genética , Ligação Genética
2.
Theor Appl Genet ; 137(1): 32, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270625

RESUMO

KEY MESSAGE: Mapping and fine mapping of bean anthracnose resistance genes is a continuous process. We report fine mapping of anthracnose resistance gene Co-18 which is the first anthracnose gene mapped to Pv10. The discovery of resistance gene is a major gain in the bean anthracnose pathosystem research. Among the Indian common bean landraces, KRC-5 exhibit high levels of resistance to the bean anthracnose pathogen Colletotrichum lindemuthianum. To precisely map the anthracnose resistance gene, we used a Recombinant Inbred Line (F2:9 RIL) population (KRC-5 × Jawala). The inheritance test revealed that KRC-5 carries a dominant resistance gene temporarily designated as Co-18. We discovered two RAPD markers linked to Co-18 among 287 RAPD markers. These RAPD markers were eventually developed into SCARs (Sc-OPR15 and Sc-OPF6) and flank Co-18 on chromosome Pv10 at a distance of 5.3 and 4.2 cM, respectively. At 4.0-4.1 Mb on Pv10, we detected a SNP (single-nucleotide polymorphism) signal. We synthesized 58 SSRs and 83 InDels from a pool of 135 SSRs and 1134 InDels, respectively. Five SSRs, four InDels, and two SCARs were used to generate the high-density linkage map, which led to the identification of two SSRs (SSR24 and SSR36) that are tightly linked to Co-18. These two SSRs flank the Co-18 to 178 kb genomic region with 13 candidate genes including five NLR (nucleotide-binding and leucine-rich repeat) genes. The closely linked markers SSR24 and SSR36 will be used in cloning and pyramiding of the Co-18 gene with other R genes to develop durable resistant bean varieties.


Assuntos
Phaseolus , Phaseolus/genética , Cicatriz , Técnica de Amplificação ao Acaso de DNA Polimórfico , Mapeamento Cromossômico , Genes Dominantes
3.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003271

RESUMO

Pusa Basmati 1509 (PB1509) is one of the major foreign-exchange-earning varieties of Basmati rice; it is semi-dwarf and early maturing with exceptional cooking quality and strong aroma. However, it is highly susceptible to various biotic stresses including bacterial blight and blast. Therefore, bacterial blight resistance genes, namely, xa13 + Xa21 and Xa38, and fungal blast resistance genes Pi9 + Pib and Pita were incorporated into the genetic background of recurrent parent (RP) PB1509 using donor parents, namely, Pusa Basmati 1718 (PB1718), Pusa 1927 (P1927), Pusa 1929 (P1929) and Tetep, respectively. Foreground selection was carried out with respective gene-linked markers, stringent phenotypic selection for recurrent parent phenotype, early generation background selection with Simple sequence repeat (SSR) markers, and background analysis at advanced generations with Rice Pan Genome Array comprising 80K SNPs. This has led to the development of Near isogenic lines (NILs), namely, Pusa 3037, Pusa 3054, Pusa 3060 and Pusa 3066 carrying genes xa13 + Xa21, Xa38, Pi9 + Pib and Pita with genomic similarity of 98.25%, 98.92%, 97.38% and 97.69%, respectively, as compared to the RP. Based on GGE-biplot analysis, Pusa 3037-1-44-3-164-20-249-2 carrying xa13 + Xa21, Pusa 3054-2-47-7-166-24-261-3 carrying Xa38, Pusa 3060-3-55-17-157-4-124-1 carrying Pi9 + Pib, and Pusa 3066-4-56-20-159-8-174-1 carrying Pita were identified to be relatively stable and better-performing individuals in the tested environments. Intercrossing between the best BC3F1s has led to the generation of Pusa 3122 (xa13 + Xa21 + Xa38), Pusa 3124 (Xa38 + Pi9 + Pib) and Pusa 3123 (Pi9 + Pib + Pita) with agronomy, grain and cooking quality parameters at par with PB1509. Cultivation of such improved varieties will help farmers reduce the cost of cultivation with decreased pesticide use and improve productivity with ensured safety to consumers.


Assuntos
Oryza , Humanos , Melhoramento Genético , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Melhoramento Vegetal , Marcadores Genéticos
4.
Sci Rep ; 13(1): 2243, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755040

RESUMO

Powdery mildew is one of the serious diseases of garden pea which causes a large number of yield losses. Genetic resistance is quite effective, being cost-effective and environment friendly than fungicide applications. In the present studies an initial attempt has been made to identify resistant genotypes against powdery mildew disease developed from hybridization followed by validation of the disease. The experimental material comprised of 48 genotypes that includes 44 advanced breeding lines was evaluated for powdery mildew incidence in Randomized Complete Block Design with three replications at two locations under field conditions [Palampur (winter 2017-18 and 2018-19) and Kukumseri (summer 2018)] and in vitro at Palampur [detached leaf method and polyhouse conditions]. Ten lines viz., SP7, SN-1, SN-6-1, SN-7-1, SN-2, SN-5-2, SN-6-2, SN-10, SN-21 and SP-281 showed resistant reaction along with check Palam Sumool while 27 lines were identified as moderately resistant in comparison to susceptible check Azad P-1. Besides, six lines namely, SP-2, SP-5, SP-10, SP-24, SA-4 and SP-12-1 gave moderately susceptible reaction along with checks Pb-89 and Palam Priya. Only, SP-19 was categorized as susceptible. The high yielding lines SP-3, SP-6 and SP-22 showed moderately resistant reaction in both natural and artificial conditions. Validation of resistance using molecular markers revealed that neither the parental genotypes nor the progenies possess the er1 gene of JI1559. The er2 linked marker ScOPX-171700 was polymorphic between Palam Sumool and Palam Priya but the marker didn't show polymorphism between er2 harboring line (JI2480). These results suggested that the lines showing resistance under field conditions may have some other genes or alleles for resistance and further confirmation is needed by developing mapping populations with specific gene or gene combinations.


Assuntos
Ascomicetos , Pisum sativum , Resistência à Doença/genética , Erysiphe , Genótipo , Pisum sativum/genética , Melhoramento Vegetal , Doenças das Plantas/genética
5.
3 Biotech ; 12(8): 165, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35845107

RESUMO

Blast disease and cold stress are two major yield-limiting factors for rice under temperate climates. Marker-assisted backcross breeding approach (MABB) was employed for the improvement of blast resistance in a popular cold-tolerant variety 'Himalaya741' by introgressing a broad-spectrum resistance locus Pi9 from a Basmati donor PB1637. A combined use of phenotypic selection and marker-based genotypic selection ensured speedy reconstitution of the recurrent parent genome (RPG) in backcross progenies; RPG recovery in most of the progenies was > 96% with three progenies namely, HPU-1-33, -38 and -49 showing complete recovery of recurrent parent genome. Notwithstanding a very higher recovery rate of RPG in introgression lines, the lines still inherited a large linkage block > 13.3 Mb with Pi9 from the donor line PB1637. The donor chromosome segments co-inherited with Pi9 gene, however, did not have any adverse effect on the agronomic performance of the Pi9 introgression lines. Of the eight genetically superior Pi9 introgression lines identified, two exhibited resemblance to Himalaya 741 for most of the agronomic traits in addition to having superior grain length and tiller number. The introgression line HPU-1-81 displayed 44% yield superiority over recurrent parent, primarily due to improvement in yield-contributing traits, namely, tiller number, panicle length, thousand-seed-weight and grain length. All the Pi9 introgression lines displayed a high level of resistance comparable to PB1637 against two highly virulent blast races, which collectively displayed compatibility to 15 different major resistance genes. The introgression lines also possessed reproductive stage cold tolerance similar to recurrent parent under prevailing cold stress conditions. The agronomically superior Pi9 introgression lines developed herein are expected to provide a comparable or better substitute to blast susceptible variety Himalaya 741 for extenuating losses due to cold stress and blast disease. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03244-w.

6.
J Fungi (Basel) ; 8(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35736067

RESUMO

Rice is a global food grain crop for more than one-third of the human population and a source for food and nutritional security. Rice production is subjected to various stresses; blast disease caused by Magnaporthe oryzae is one of the major biotic stresses that has the potential to destroy total crop under severe conditions. In the present review, we discuss the importance of rice and blast disease in the present and future global context, genomics and molecular biology of blast pathogen and rice, and the molecular interplay between rice-M. oryzae interaction governed by different gene interaction models. We also elaborated in detail on M. oryzae effector and Avr genes, and the role of noncoding RNAs in disease development. Further, rice blast resistance QTLs; resistance (R) genes; and alleles identified, cloned, and characterized are discussed. We also discuss the utilization of QTLs and R genes for blast resistance through conventional breeding and transgenic approaches. Finally, we review the demonstrated examples and potential applications of the latest genome-editing tools in understanding and managing blast disease in rice.

7.
Environ Microbiome ; 17(1): 28, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35619157

RESUMO

BACKGROUND: With its adapted microbial diversity, the phyllosphere contributes microbial metagenome to the plant holobiont and modulates a host of ecological functions. Phyllosphere microbiome (hereafter termed phyllomicrobiome) structure and the consequent ecological functions are vulnerable to a host of biotic (Genotypes) and abiotic factors (Environment) which is further compounded by agronomic transactions. However, the ecological forces driving the phyllomicrobiome assemblage and functions are among the most understudied aspects of plant biology. Despite the reports on the occurrence of diverse prokaryotic phyla such as Proteobacteria, Firmicutes, Bacteroides, and Actinobacteria in phyllosphere habitat, the functional characterization leading to their utilization for agricultural sustainability is not yet explored. Currently, the metabarcoding by Next-Generation-Sequencing (mNGS) technique is a widely practised strategy for microbiome investigations. However, the validation of mNGS annotations by culturomics methods is not integrated with the microbiome exploration program. In the present study, we combined the mNGS with culturomics to decipher the core functional phyllomicrobiome of rice genotypes varying for blast disease resistance planted in two agroclimatic zones in India. There is a growing consensus among the various stakeholder of rice farming for an ecofriendly method of disease management. Here, we proposed phyllomicrobiome assisted rice blast management as a novel strategy for rice farming in the future. RESULTS: The tropical "Island Zone" displayed marginally more bacterial diversity than that of the temperate 'Mountain Zone' on the phyllosphere. Principal coordinate analysis indicated converging phyllomicrobiome profiles on rice genotypes sharing the same agroclimatic zone. Interestingly, the rice genotype grown in the contrasting zones displayed divergent phyllomicrobiomes suggestive of the role of environment on phyllomicrobiome assembly. The predominance of phyla such as Proteobacteria, Actinobacteria, and Firmicutes was observed in the phyllosphere irrespective of the genotypes and climatic zones. The core-microbiome analysis revealed an association of Acidovorax, Arthrobacter, Bacillus, Clavibacter, Clostridium, Cronobacter, Curtobacterium, Deinococcus, Erwinia, Exiguobacterium, Hymenobacter, Kineococcus, Klebsiella, Methylobacterium, Methylocella, Microbacterium, Nocardioides, Pantoea, Pedobacter, Pseudomonas, Salmonella, Serratia, Sphingomonas and Streptomyces on phyllosphere. The linear discriminant analysis (LDA) effect size (LEfSe) method revealed distinct bacterial genera in blast-resistant and susceptible genotypes, as well as mountain and island climate zones. SparCC based network analysis of phyllomicrobiome showed complex intra-microbial cooperative or competitive interactions on the rice genotypes. The culturomic validation of mNGS data confirmed the occurrence of Acinetobacter, Aureimonas, Curtobacterium, Enterobacter, Exiguobacterium, Microbacterium, Pantoea, Pseudomonas, and Sphingomonas in the phyllosphere. Strikingly, the contrasting agroclimatic zones showed genetically identical bacterial isolates suggestive of vertical microbiome transmission. The core-phyllobacterial communities showed secreted and volatile compound mediated antifungal activity on M. oryzae. Upon phyllobacterization (a term coined for spraying bacterial cells on the phyllosphere), Acinetobacter, Aureimonas, Pantoea, and Pseudomonas conferred immunocompetence against blast disease. Transcriptional analysis revealed activation of defense genes such as OsPR1.1, OsNPR1, OsPDF2.2, OsFMO, OsPAD4, OsCEBiP, and OsCERK1 in phyllobacterized rice seedlings. CONCLUSIONS: PCoA indicated the key role of agro-climatic zones to drive phyllomicrobiome assembly on the rice genotypes. The mNGS and culturomic methods showed Acinetobacter, Aureimonas, Curtobacterium, Enterobacter, Exiguobacterium, Microbacterium, Pantoea, Pseudomonas, and Sphingomonas as core phyllomicrobiome of rice. Genetically identical Pantoea intercepted on the phyllosphere from the well-separated agroclimatic zones is suggestive of vertical transmission of phyllomicrobiome. The phyllobacterization showed potential for blast disease suppression by direct antibiosis and defense elicitation. Identification of functional core-bacterial communities on the phyllosphere and their co-occurrence dynamics presents an opportunity to devise novel strategies for rice blast management through phyllomicrobiome reengineering in the future.

8.
Microbiol Res ; 246: 126704, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33486428

RESUMO

We have deciphered the leaf endophytic-microbiome of aromatic (cv. Pusa Basmati-1) and non-aromatic (cv. BPT-5204) rice-genotypes grown in the mountain and plateau-zones of India by both metagenomic NGS (mNGS) and conventional microbiological methods. Microbiome analysis by sequencing V3-V4 region of ribosomal gene revealed marginally more bacterial operational taxonomic units (OTU) in the mountain zone at Palampur and Almora than plateau zone at Hazaribagh. Interestingly, the rice leaf endophytic microbiomes in mountain zone were found clustered separately from that of plateau-zone. The Bray-Curtis dissimilarity indices indicated influence of geographical location as compared to genotype per se for shaping rice endophytic microbiome composition. Bacterial phyla, Proteobacteria followed by Bacteroidetes, Firmicutes, and Actinobacteria were found abundant in all three locations. The core-microbiome analysis devulged association of Acidovorax; Acinetobacter; Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium; Aureimonas; Bradyrhizobium; Burkholderia-Caballeronia-Paraburkholderia; Enterobacter; Pantoea; Pseudomonas; Sphingomonas; and Stenotrophomonas with the leaf endosphere. The phyllosphere and spermosphere microbiota appears to have contributed to endophytic microbiota of rice leaf. SparCC network analysis of the endophytic-microbiome showed complex cooperative and competitive intra-microbial interactions among the microbial communities. Microbiological validation of mNGS data further confirmed the presence of core and transient genera such as Acidovorax, Alcaligenes, Bacillus, Chryseobacterium, Comamonas, Curtobacterium, Delftia, Microbacterium, Ochrobactrum, Pantoea, Pseudomonas, Rhizobium, Rhodococcus, Sphingobacterium, Staphylococcus, Stenotrophomonas, and Xanthomonas in the rice genotypes. We isolated, characterized and identified core-endophytic microbial communities of rice leaf for developing microbiome assisted crop management by microbiome reengineering in future.


Assuntos
Endófitos/classificação , Metagenômica , Microbiota , Oryza/microbiologia , Folhas de Planta/microbiologia , Biodiversidade , Endófitos/genética , Genoma Bacteriano , Genótipo , Geografia , Índia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S , Análise de Sequência de DNA
9.
C R Biol ; 342(5-6): 142-153, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447175

RESUMO

Ranbir Basmati is one of the traditional Basmati varieties of India and of the most popular traditional Basmati variety grown in Jammu's region (State of Jammu & Kashmir). It is a tall and short-duration variety with strong aroma and excellent cooking quality. However, it is susceptible to bacterial blight (BB) disease caused by Xanthomonas oryzae pv oryzae (Xoo) and prone to lodging. In this study, semi-dwarf (sd1) and BB resistance genes (Xa21 and xa13) were introgressed into Ranbir Basmati using marker-assisted backcross breeding (MABB) scheme. A high-yielding PAU148 carrying Xa21, xa13 and sd1 genes was used as a donor parent. On each generation target, genes were selected, while polymorphic SSR markers were used to select plants having maximum recovery of the recurrent genome. The maximum genome recovery of Ranbir Basmati in BC2F2 was 86.9% in introgressed line SBTIL121. The genotypes carrying resistant genes exhibited very high levels of tolerance against BB disease along with good Basmati rice grain quality traits. The agronomic traits of introgressed lines evaluated in the field and the laboratory showed that most of the agro-morphological traits were similar or superior to Ranbir Basmati. The identified lines can be further evaluated and released as Improved Ranbir Basmati variety.


Assuntos
Cruzamentos Genéticos , Melhoramento Genético/métodos , Oryza/genética , Controle Biológico de Vetores/métodos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Seleção Genética/genética , Aspergillus oryzae , Cruzamento , Culinária , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Resistência à Doença , Marcadores Genéticos , Genoma de Planta/genética , Índia
10.
Front Microbiol ; 10: 966, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134015

RESUMO

Magnaporthe oryzae is one of the fungal pathogens of rice which results in heavy yield losses worldwide. Understanding the genomic structure of M. oryzae is essential for appropriate deployment of the blast resistance in rice crop improvement programs. In this study we sequenced two M. oryzae isolates, RML-29 (avirulent) and RP-2421 (highly virulent) and performed comparative study along with three publically available genomes of 70-15, P131, and Y34. We identified several candidate effectors (>600) and isolate specific sequences from RML-29 and RP-2421, while a core set of 10013 single copy orthologs were found among the isolates. Pan-genome analysis showed extensive presence and absence variations (PAVs). We identified isolate-specific genes across 12 isolates using the pan-genome information. Repeat analysis was separately performed for each of the 15 isolates. This analysis revealed ∼25 times higher copy number of short interspersed nuclear elements (SINE) in virulent than avirulent isolate. We conclude that the extensive PAVs and occurrence of SINE throughout the genome could be one of the major mechanisms by which pathogenic variability is emerging in M. oryzae isolates. The knowledge gained in this comparative genome study can provide understandings about the fungal genome variations in different hosts and environmental conditions, and it will provide resources to effectively manage this important disease of rice.

11.
Fungal Genet Biol ; 115: 9-19, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29630984

RESUMO

Rice and Magnaporthe oryzae constitutes an ideal pathosystem for studying host-pathogen interaction in cereals crops. There are two alternative hypotheses, viz. Arms race and Trench warfare, which explain the co-evolutionary dynamics of hosts and pathogens which are under continuous confrontation. Arms race proposes that both R- and Avr- genes of host and pathogen, respectively, undergo positive selection. Alternatively, trench warfare suggests that either R- or Avr- gene in the pathosystem is under balanced selection intending to stabilize the genetic advantage gained over the opposition. Here, we made an attempt to test the above-stated hypotheses in rice-M. oryzae pathosystem at loci of three R-Avr gene pairs, Piz-t-AvrPiz-t, Pi54-AvrPi54 and Pita-AvrPita using allele mining approach. Allele mining is an efficient way to capture allelic variants existing in the population and to study the selective forces imposed on the variants during evolution. Results of nucleotide diversity, neutrality statistics and phylogenetic analyses reveal that Piz-t, Pi54 and AvrPita are diversified and under positive selection at their corresponding loci, while their counterparts, AvrPiz-t, AvrPi54 and Pita are conserved and under balancing selection, in nature. These results imply that rice-M. oryzae populations are engaged in a trench warfare at least at the three R/Avr loci studied. It is a maiden attempt to study the co-evolution of three R-Avr gene pairs in this pathosystem. Knowledge gained from this study will help in understanding the evolutionary dynamics of host-pathogen interaction in a better way and will also aid in developing new durable blast resistant rice varieties in future.


Assuntos
Resistência à Doença/genética , Evolução Molecular , Magnaporthe/genética , Oryza/microbiologia , Alelos , Sequência de Aminoácidos , Interações Hospedeiro-Patógeno/genética , Magnaporthe/patogenicidade , Oryza/genética , Oryza/crescimento & desenvolvimento , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Virulência
12.
Front Plant Sci ; 7: 1140, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27551285

RESUMO

Rice blast caused by Magnaporthe oryzae is one of the most important diseases of rice. Pi54, a rice gene that imparts resistance to M. oryzae isolates prevalent in India, was already cloned but its avirulent counterpart in the pathogen was not known. After decoding the whole genome of an avirulent isolate of M. oryzae, we predicted 11440 protein coding genes and then identified four candidate effector proteins which are exclusively expressed in the infectious structure, appresoria. In silico protein modeling followed by interaction analysis between Pi54 protein model and selected four candidate effector proteins models revealed that Mo-01947_9 protein model encoded by a gene located at chromosome 4 of M. oryzae, interacted best at the Leucine Rich Repeat domain of Pi54 protein model. Yeast-two-hybrid analysis showed that Mo-01947_9 protein physically interacts with Pi54 protein. Nicotiana benthamiana leaf infiltration assay confirmed induction of hypersensitive response in the presence of Pi54 gene in a heterologous system. Genetic complementation test also proved that Mo-01947_9 protein induces avirulence response in the pathogen in presence of Pi54 gene. Here, we report identification and cloning of a new fungal effector gene which interacts with blast resistance gene Pi54 in rice.

13.
Theor Appl Genet ; 128(7): 1243-59, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25869921

RESUMO

KEY MESSAGE: A set of NILs carrying major blast resistance genes in a Basmati rice variety has been developed. Also, the efficacy of pyramids over monogenic NILs against rice blast pathogen Magnaporthe oryzae has been demonstrated. Productivity and quality of Basmati rice is severely affected by rice blast disease. Major genes and QTLs conferring resistance to blast have been reported only in non-Basmati rice germplasm. Here, we report incorporation of seven blast resistance genes from the donor lines DHMASQ164-2a (Pi54, Pi1, Pita), IRBLz5-CA (Pi2), IRBLb-B (Pib), IRBL5-M (Pi5) and IRBL9-W (Pi9) into the genetic background of an elite Basmati rice variety Pusa Basmati 1 (PB1). A total of 36 near-isogenic lines (NILs) comprising of 14 monogenic, 16 two-gene pyramids and six three-gene pyramids were developed through marker-assisted backcross breeding (MABB). Foreground, recombinant and background selection was used to identify the plants with target gene(s), minimize the linkage drag and increase the recurrent parent genome (RPG) recovery (93.5-98.6 %), respectively, in the NILs. Comparative analysis performed using 50,051 SNPs and 500 SSR markers revealed that the SNPs provided better insight into the RPG recovery. Most of the monogenic NILs showed comparable performance in yield and quality, concomitantly, Pusa1637-18-7-6-20 (Pi9), was significantly superior in yield and stable across four different environments as compared to recurrent parent (RP) PB1. Further, among the pyramids, Pusa1930-12-6 (Pi2+Pi5) showed significantly higher yield and Pusa1633-7-8-53-6-8 (Pi54+Pi1+Pita) was superior in cooking quality as compared to RP PB1. The NILs carrying gene Pi9 were found to be the most effective against the concoction of virulent races predominant in the hotspot locations for blast disease. Conversely, when analyzed under artificial inoculation, three-gene pyramids expressed enhanced resistance as compared to the two-gene and monogenic NILs.


Assuntos
Resistência à Doença/genética , Magnaporthe/patogenicidade , Oryza/genética , Doenças das Plantas/genética , Agricultura , Cruzamento , Culinária , DNA de Plantas/genética , Qualidade dos Alimentos , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Genótipo , Repetições de Microssatélites , Oryza/classificação , Oryza/microbiologia , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único
14.
J Genet ; 91(3): 279-87, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23271013

RESUMO

Lentil (Lens culinaris ssp. culinaris), is a self-pollinating diploid (2n = 2x = 14), cool-season legume crop and is consumed worldwide as a rich source of protein (~24.0%), largely in vegetarian diets. Here we report development of a genetic linkage map of Lens using 114 F(2) plants derived from the intersubspecific cross between L 830 and ILWL 77. RAPD (random amplified polymorphic DNA) primers revealed more polymorphism than ISSR (intersimple sequence repeat) and SSR (simple sequence repeat) markers. The highest proportion (30.72%) of segregation distortion was observed in RAPD markers. Of the 235 markers (34 SSR, 9 ISSR and 192 RAPD) used in the mapping study, 199 (28 SSRs, 9 ISSRs and 162 RAPDs) were mapped into 11 linkage groups (LGs), varying between 17.3 and 433.8 cM and covering 3843.4 cM, with an average marker spacing of 19.3 cM. Linkage analysis revealed nine major groups with 15 or more markers each and two small LGs with two markers each, and 36 unlinked markers. The study reported assigning of 11 new SSRs on the linkage map. Of the 66 markers with aberrant segregation, 14 were unlinked and the remaining 52 were mapped. ISSR and RAPD markers were found to be useful in map construction and saturation. The current map represents maximum coverage of lentil genome and could be used for identification of QTL regions linked to agronomic traits, and for marker-assisted selection in lentil.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Marcadores Genéticos/genética , Lens (Planta)/genética , Genoma de Planta/genética , Lens (Planta)/classificação , Repetições de Microssatélites/genética , Locos de Características Quantitativas/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Reprodutibilidade dos Testes , Especificidade da Espécie
15.
Int J Food Sci Nutr ; 63(3): 290-5, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21981021

RESUMO

In the present study, the ß-carotene, calcium, iron and zinc content in the leaves of 46 accessions of three Chenopodium species viz. Chenopodium album, C. album ssp. amaranticolor and Chenopodium quinoa was investigated. A wide range of variability, inter-specific as well as varietal, for the ß-carotene [0.19-5.91 mg 100 g(- 1) fresh weight (FW)], calcium (358.35-960.10 mg 100 g(- 1) FW), iron (0.56-7.90 mg 100 g(- 1) FW) and zinc content (0.07-4.26 mg 100 g(- 1) FW) was observed. The C. album ssp. amaranticolor accessions IC341710 and IC469275 had a high content of all the four nutrients and were ideal food to alleviate nutritional deficiencies in humans. Nutritionally rich IC341710 and IC469275 were further studied to estimate micronutrient retention in cooked leaves. Between the two methods used to cook leaves, stir-frying showed better retention of micronutrients than pressure cooking.


Assuntos
Chenopodium/química , Culinária , Minerais/análise , beta Caroteno/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...