Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Biosyst ; 7: 100060, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36824490

RESUMO

We describe the preparation of a membrane composed of polypyrrole-polystyrene (PPy-PS) and its application in DNA extraction. We adopted the electrospinning technique to prepare polystyrene (PS) membranes, which we used as substrates for incorporating polypyrrole chains through an in situ chemical procedure. As a model system, we initially investigated the use of PPy-PS membranes for the extraction of salmon sperm DNA from aqueous solutions. These studies have shown that the PPy-PS membrane has a maximum adsorption capacity of 236.0 mg of DNA per gram of PPy after 30 min of exposure to a DNA solution (100 mg/L). We incorporated the PPy-PS membranes into centrifugation columns, which we used to carry out experiments for extracting and purification of DNA from curly lettuce leaves. The protocol was initially optimized by first examining the most appropriate concentration of the three components of the lysis buffer (Tris/HCl, NaCl, and EDTA-Na). We then investigated the most adequate volumes of the concentrated surfactant solution (SDS 20%) and that used in the protein and polysaccharide precipitation step (5 M potassium acetate, pH 6.3), factors that directly influence the quality and quantity of the fraction of DNA obtained. For curly lettuce leaves, both in their mature and young stages, the yield and purity of the DNA purified using the PPy-PS membrane were comparable to those obtained using a commercial kit. In both cases, the collected DNA samples presented excellent integrity and quality. These results are suggestive that these composite membranes are competitive with the commercial kits available for the extraction and purification of DNA from plants.

2.
Colloids Surf B Biointerfaces ; 208: 112120, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34597940

RESUMO

In 2016, the Zika virus (ZIKV) infection became a major public health problem, after the discovery that an alarming increase in the number of Brazilian newborns with microcephaly could be associated with the occurrence of this viral disease during the pregnancy of their mothers. The urgent need for simple diagnostic methods that allow rapid screening of suspected cases has stimulated the search for low-cost devices capable of detecting specific sequences of nucleic acids. The present work describes the development of nanostructured films formed by bilayers of conjugated polymers for rapid detection of the presence of Zika virus DNA, via fluorescence methods. For this, we initially deposited alternating layers of polyaniline (PANI) and polypyrrole (PPY) on the surface of polyethylene terephthalate (PET) sheets. The films obtained were then characterized by SEM, UV-Vis, ATR-FTIR, and contact angle measurements. For their use as quenchers for the diagnosis of Zika, a single DNA strand-specific for ZIKV was labeled with a fluorophore (FAM-ssDNA). We determined the time required for the saturation of the interaction between probe FAM-ssDNA and the film (180 min) and the time for the maximal hybridization between FAM-ssDNA and target DNA to occur (60 min). The detection limits were estimated as 345 pM and 278 pM for the PET/PPY-PANI and PET/PANI-PPY hybrid films, respectively. The simplicity of the procedure, coupled with the fact that a positive/negative response can be obtained in less than 60 min, suggests that the proposal of using these polymeric bilayer films is a promising methodology for the development of rapid molecular diagnostic tests.


Assuntos
Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Condutividade Elétrica , Feminino , Humanos , Recém-Nascido , Polímeros , Gravidez , Complicações Infecciosas na Gravidez/virologia , Pirróis , Zika virus/genética , Infecção por Zika virus/diagnóstico
3.
Anal Chim Acta ; 1178: 338762, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34482873

RESUMO

We report the synthesis and characterization of a new hybrid magnetic composite formed by the enveloping of magnetic iron oxide nanoparticles (γ-NP) with chains of the conductive polymer PEDOT, and its use for the efficient separation of DNA molecules from complex biological samples, allowing the high yield separation of a pure and high-quality DNA fraction. The successful formation of the γ-NP/PEDOT composite was confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy, UV visible spectroscopy (UV-Vis), and magnetic hysteresis loop measurements. The nanocomposites showed an excellent capacity of DNA adsorption (Qe âˆ¼ 248 mg/g) in a model system consisting of salmon sperm DNA. When the γ-NP/PEDOT was used in protocols to extract the DNA from complex samples, the corresponding yield was in the range of 6.4 µg (blood) and 7.3 µg (bacteria), as evaluated quality by UV-Vis, PCR analysis, and electrophoresis assays. We also established that the captured DNA does not need to be detached from the nanocomposite for use as seeding material in PCR amplification experiments. These results and the simplicity of the protocols indicate that the γ-NP/PEDOT composite is a promising DNA absorbent, being competitive with the commercially available magnetic purification kits.


Assuntos
Nanocompostos , Compostos Bicíclicos Heterocíclicos com Pontes , DNA/genética , Polímeros , Espectroscopia de Infravermelho com Transformada de Fourier
4.
J Environ Sci (China) ; 100: 62-73, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33279054

RESUMO

We report the preparation of poly(3,4-ethylene dioxythiophene) (PEDOT)-modified polyvinylidene fluoride electrospun fibers and their use as a novel adsorbent material for the removal of the anionic dye Methyl Orange (MO) from aqueous media. This novel adsorbent material can be used to selectively remove MO on a wide pH range (3.0-10.0), with a maximum capacity of 143.8 mg/g at pH 3.0. When used in a recirculating filtration system, the maximum absorption capacity was reached in a shorter time (20 min) than that observed for batch mode experiments (360 min). Based on the analyses of the kinetics and adsorption isotherm data, one can conclude that the predominant mechanism of interaction between the membrane and the dissolved dye molecules is electrostatic. Besides, considering the estimated values for the Gibbs energy, and entropy and enthalpy changes, it was established that the adsorption process is spontaneous and occurs in an endothermic manner. The good mechanical and environmental stability of these membranes allowed their use in at least 20 consecutive adsorption/desorption cycles, without significant loss of their characteristics. We suggest that the physical-chemical characteristics of PEDOT make these hybrid mats a promising adsorbent material for use in water remediation protocols and effluent treatment systems.


Assuntos
Poluentes Químicos da Água , Adsorção , Compostos Azo , Compostos Bicíclicos Heterocíclicos com Pontes , Concentração de Íons de Hidrogênio , Cinética , Polímeros , Polivinil , Termodinâmica
5.
Langmuir ; 36(11): 2920-2929, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32119558

RESUMO

Phosphate ions perform a variety of functions in metabolic processes and are essential for all living organisms. The determination of the concentration of phosphate ions is useful in clinical diagnosis of various diseases as an inadequate phosphate level could lead to many health problems. In the search for a cost-effective method of fast monitoring, we investigated the use of cobalt ferrite nanoparticles (CoFeNPs) in the selective recognition of phosphate ions dissolved in aqueous media and more complex samples, such as human blood serum. We prepared these NPs by a chemical coprecipitation route and subjected them to annealing at 600 °C for 1 h. The successful formation of the NPs was confirmed by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and hysteresis loop measurements. The NPs exhibited a ferrimagnetic behavior, a spinel-type crystalline structure, and hexagonal shape in the nanoscale range. We demonstrated that CoFeNPs containing immobilized fluorescent-labeled single-chain DNA (ssDNA*) probes can be applied for the fast selective detection of phosphate ions dissolved in a liquid medium. We have explored the fact that phosphate groups can displace ssDNA* probes attached to the nanoparticles, therefore causing a perceptible change in the fluorescence signal of the supernatant liquid. This detection method has been tested for the sensing of phosphate ions present both in aqueous solutions and in biological samples, with excellent selectivity and a low limit of detection (∼1.75 nM).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA