Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 111(2): 370-7, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15902396

RESUMO

Resistance to grapevine powdery mildew is controlled by Run1, a single dominant gene present in the wild grapevine species, Muscadinia rotundifolia, but absent from the cultivated species, Vitis vinifera. Run1 has been introgressed into V. vinifera using a pseudo-backcross strategy, and genetic markers have previously been identified that are linked to the resistance locus. Here we describe the construction of comprehensive genetic and physical maps spanning the resistance locus that will enable future positional cloning of the resistance gene. Physical mapping was performed using a bacterial artificial chromosome (BAC) library constructed using genomic DNA extracted from a resistant V. vinifera individual carrying Run1 within an introgression. BAC contig assembly has enabled 20 new genetic markers to be identified that are closely linked to Run1, and the position of the resistance locus has been refined, locating the gene between the simple sequence repeat (SSR) marker, VMC4f3.1, and the BAC end sequence-derived marker, CB292.294. This region contains two multigene families of resistance gene analogues (RGA). A comparison of physical and genetic mapping data indicates that recombination is severely repressed in the vicinity of Run1, possibly due to divergent sequence contained within the introgressed fragment from M. rotundifolia that carries the Run1 gene.


Assuntos
Ascomicetos , Mapeamento Cromossômico , Genes de Plantas/genética , Imunidade Inata/genética , Doenças das Plantas/microbiologia , Vitaceae/genética , Cromossomos Artificiais Bacterianos , Repetições de Microssatélites/genética , Doenças das Plantas/genética , Análise de Sequência de DNA
2.
Theor Appl Genet ; 96(3-4): 348-53, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24710870

RESUMO

The inheritance of an inter-simple-sequence-repeat (ISSR) polymorphism was studied in a cross of cultivated chickpea (Cicer arietinum L.) and a closely related wild species (C. reticulatum Lad.) using primers that anneal to a simple repeat of various lengths, sequences and non-repetitive motifs. Dinucleotides were the majority of those tested, and provided all of the useful banding patterns. The ISSR loci showed virtually complete agreement with expected Mendelian ratios. Twenty two primers were used for analysis and yielded a total of 31 segregating loci. Primers based on (GA)n repeats were the most abundant while primers with a (TG)n repeat gave the largest number of polymorphic loci. Nucleotides at the 5' and 3' end of the primers played an important role in detecting polymorphism. All the markers showed dominance. We found an ISSR marker linked to the gene for resistance to fusarium wilt race 4. The marker concerned, UBC-855500, was found to be linked in repulsion with the fusarium wilt resistance gene at a distance of 5.2 cM. It co-segregated with CS-27700, a RAPD marker previously shown to be linked to the gene for resistance to fusarium wilt race 1, and was mapped to linkage group 6 of the Cicer genome. This indicated that genes for resistance to fusarium wilt races 1 and 4 are closely linked. The marker UBC-855500 is located 0.6 cM from CS-27700 and is present on the same side of the wilt resistance gene. To our knowledge this is the first report of the utility of an ISSR marker in gene tagging. These markers may provide valuable information for the development of sequence-tagged microsatellite sites (STMS) at a desired locus.

3.
Theor Appl Genet ; 91(6-7): 893-8, 1995 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24169974

RESUMO

Randomly amplified polymorphic DNA (RAPD) markers were used for the identification of pigeonpea [Cajanus cajan (L.) Millsp.] cultivars and their related wild species. The use of single primers of arbitrary nucleotide sequence resulted in the selective amplification of DNA fragments that were unique to individual accessions. The level of polymorphism among the wild species was extremely high, while little polymorphism was detected within Cajanus cajan accessions. All of the cultivars and wild species under study could be easily distinguished with the help of different primers, thereby indicating the immense potential of RAPD in the genetic fingerprinting of pigeonpea. On the basis of our data the genetic relationship between pigeonpea cultivars and its wild species could be established.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...