Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38928976

RESUMO

A recent study conducted in Khon Kaen Province, Thailand, evaluated the effectiveness of a technology-assisted intervention aimed at improving water quality and addressing related health issues in communities around key water bodies. The intervention targeted health concerns associated with water contamination, including chronic kidney diseases, skin conditions, hypertension, and neurological symptoms. The study included water quality assessments and health evaluations of 586 residents and implemented a Learning Innovation Platform (LIP) across 13 communities. Results showed significant improvements in the community, including a decrease in hypertension and skin-related health issues, as well as enhanced community awareness and proficiency in implementing simple water quality assessments and treatment. The study demonstrated the value of a comprehensive, technology-driven community approach, effectively enhancing water quality and health outcomes, and promoting greater community awareness and self-sufficiency in managing environmental health risks.


Assuntos
Qualidade da Água , Tailândia , Humanos , Feminino , Masculino , Adulto , Poluição da Água , Pessoa de Meia-Idade , Dermatopatias/terapia
2.
Anal Chem ; 94(12): 4919-4923, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35306807

RESUMO

We report the production and characterization of effective amperometric sensors for cathodic hydrogen peroxide (H2O2) detection. The proposed electrodes involve a combination of a H2O2-signaling Prussian Blue (PB)/carbon nanotube (CNT) layer with a glaze of the biopolymers gelatin (top) and zein (beneath) for protection against PB leakage. The sandwich-type sensor was constructed through simple "drop and dry" steps with (1) suspensions of the CNTs in a soluble PB solution, (2) zein in ethanol, and (3) gelatin in water, applied sequentially to the carbon working electrode disk of a screen-printed carbon electrode (SPCE) platform. The PB in the signaling layer acted as the electrocatalyst for H2O2 reduction at -150 mV vs Ag/AgCl/3 M KCl, enabling cathodic H2O2 amperometry with good target proportionality. Calibration trials confirmed the linearity of the response up to 700 µM (R2 > 0.998), with a sensitivity of 0.425 µA µM-1 cm-2 and a practical detection limit of 1 µM. Quantification of H2O2 in model and real samples with gelatin-zein-PB/CNT-SPCEs had a recovery of close to 100% of the true value. Since they are easily and cheaply made and yield accurate target assessments, gelatin-zein-PB/CNT-SPCEs are an ideal tool for electrochemical H2O2 analyses in human body fluids, health care products, and samples from industries that use H2O2 as a bleach and germicide. Workers with little experience in sensor fabrication and limited funding will particularly benefit from utilization of the proposed H2O2 probes, which as well as being used in H2O2 testing also have a potential application as the transducer unit of oxidase-based biosensors with amperometric H2O2 readout.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Zeína , Eletrodos , Ferrocianetos , Gelatina , Humanos , Peróxido de Hidrogênio/análise , Nanotubos de Carbono/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA