Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003060

RESUMO

Three Lactococcus lactis strains from the nasal microbiota of healthy pigs were identified as candidates for reducing MRSA in pigs. The safety of nasal administration of a cocktail of these strains was examined in new-born piglets. Six days pre-farrowing, twelve sows were assigned to the placebo or cocktail group (n = 6/group). After farrowing, piglets were administered with either 0.5 mL of the placebo or the cocktail to each nostril. Health status and body weight were monitored at regular time points. Two piglets from three sows/treatment group were euthanised at 24 h, 96 h and 14 d after birth, and conchae, lung and tonsil samples were collected for histopathological and gene expression analysis. Health scores were improved in the cocktail group between d1-5. Body weight and daily gains did not differ between groups. Both groups displayed histological indications of euthanasia and inflammation in the lungs, signifying the findings were not treatment related. The expression of pBD2, TLR9 and IL-1ß in the nasal conchae differed between groups, indicating the cocktail has the potential to modulate immune responses. In summary, the L. lactis cocktail was well tolerated by piglets and there was no negative impact on health scores, growth or lung histopathology indicating that it is safe for administration to new-born piglets.

2.
Sci Rep ; 13(1): 8900, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264062

RESUMO

This study examined the effects of maternal and/or post-weaning Bacillus altitudinis supplementation on the microbiota in sow colostrum and faeces, and offspring digesta and faeces. Sows (n = 12/group) were assigned to: (1) standard diet (CON), or (2) CON supplemented with probiotic B. altitudinis spores (PRO) from day (d)100 of gestation to weaning (d26 of lactation). At weaning, offspring were assigned to CON or PRO for 28d, resulting in: (1) CON/CON, (2) CON/PRO, (3) PRO/CON, and (4) PRO/PRO, after which all received CON. Samples were collected from sows and selected offspring (n = 10/group) for 16S rRNA gene sequencing. Rothia was more abundant in PRO sow colostrum. Sow faeces were not impacted but differences were identified in offspring faeces and digesta. Most were in the ileal digesta between PRO/CON and CON/CON on d8 post-weaning; i.e. Bacteroidota, Alloprevotella, Prevotella, Prevotellaceae, Turicibacter, Catenibacterium and Blautia were more abundant in PRO/CON, with Firmicutes and Blautia more abundant in PRO/PRO compared with CON/CON. Lactobacillus was more abundant in PRO/CON faeces on d118 post-weaning. This increased abundance of polysaccharide-fermenters (Prevotella, Alloprevotella, Prevotellaceae), butyrate-producers (Blautia) and Lactobacillus likely contributed to previously reported improvements in growth performance. Overall, maternal, rather than post-weaning, probiotic supplementation had the greatest impact on intestinal microbiota.


Assuntos
Colostro , Dieta , Gravidez , Suínos , Animais , Feminino , Dieta/veterinária , Desmame , RNA Ribossômico 16S/genética , Esporos Bacterianos , Lactação , Suplementos Nutricionais , Fezes/microbiologia , Ração Animal/análise
3.
Sci Rep ; 11(1): 23304, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857778

RESUMO

The objective was to evaluate the effect of dietary Bacillus altitudinis spore supplementation during day (D)0-28 post-weaning (PW) and/or D29-56 PW compared with antibiotic and zinc oxide (AB + ZnO) supplementation on pig growth and gut microbiota. Eighty piglets were selected at weaning and randomly assigned to one of five dietary treatments: (1) negative control (Con/Con); (2) probiotic spores from D29-56 PW (Con/Pro); (3) probiotic spores from D0-28 PW (Pro/Con); (4) probiotic spores from D0-56 PW (Pro/Pro) and (5) AB + ZnO from D0-28 PW. Overall, compared with the AB + ZnO group, the Pro/Con group had lower body weight, average daily gain and feed intake and the Pro/Pro group tended to have lower daily gain and feed intake. However, none of these parameters differed between any of the probiotic-treated groups and the Con/Con group. Overall, AB + ZnO-supplemented pigs had higher Bacteroidaceae and Prevotellaceae and lower Lactobacillaceae and Spirochaetaceae abundance compared to the Con/Con group, which may help to explain improvements in growth between D15-28 PW. The butyrate-producing genera Agathobacter, Faecalibacterium and Roseburia were more abundant in the Pro/Con group compared with the Con/Con group on D35 PW. Thus, whilst supplementation with B. altitudinis did not enhance pig growth performance, it did have a subtle, albeit potentially beneficial, impact on the intestinal microbiota.


Assuntos
Antibacterianos/administração & dosagem , Bacillus/efeitos dos fármacos , Dieta/veterinária , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Suínos/crescimento & desenvolvimento , Suínos/microbiologia , Óxido de Zinco/administração & dosagem , Animais , Antibacterianos/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Masculino , Probióticos/administração & dosagem , Desmame , Aumento de Peso/efeitos dos fármacos , Óxido de Zinco/farmacologia
4.
Animals (Basel) ; 11(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34573610

RESUMO

In young pigs, the challenge of weaning frequently leads to dysbiosis. This predisposes pigs to intestinal infection such as post-weaning diarrhoea (PWD). Dietary interventions to reduce PWD have centred on dietary inclusion of antibiotic growth promoters (AGP) and antimicrobials in pig diets, or high concentrations of zinc oxide. These interventions are under scrutiny because of their role in promoting multidrug resistant bacteria and the accumulation of minerals in the environment. There are significant efforts being made to identify natural alternatives. Marine polysaccharides, such as laminarin and fucoidan from macroalgae and chitosan and chito-oligosaccharides from chitin, are an interesting group of marine dietary supplements, due to their prebiotic, antibacterial, anti-oxidant, and immunomodulatory activities. However, natural variability exists in the quantity, structure, and bioactivity of these polysaccharides between different macroalgae species and harvest seasons, while the wide range of available extraction methodologies and conditions results in further variation. This review will discuss the development of the gastrointestinal tract in the pig during the post-weaning period and how feeding marine polysaccharides in both the maternal and the post-weaned pig diet, can be used to alleviate the negative effects associated with weaning.

5.
Mar Drugs ; 19(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810463

RESUMO

The objective of this study was to examine the effects of feeding laminarin (LAM) and fucoidan (FUC) enriched seaweed extracts up to d35 post-weaning on measures of animal performance, intestinal microbial and transcriptome profiles. 75 pigs were assigned to one of three groups: (1) basal diet; (2) basal diet + 250 ppm fucoidan; (3) basal diet + 300 ppm laminarin with 7 replicates per treatment group. Measures of performance were collected weekly and animals sacrificed on d35 post-weaning for the sampling of gastrointestinal tissue and digesta. Animal performance was similar between the basal group and the groups supplemented with FUC and LAM (P > 0.05). Pigs fed the basal diet had higher alpha diversity compared to both the LAM and FUC supplemented pigs (P < 0.05). Supplementation with LAM and FUC increased the production of butyric acid compared to basal fed pigs (P < 0.05). At genus level pigs fed the LAM supplemented diet had the greatest abundance of Faecalbacterium, Roseburia and the lowest Campylobacter of the three experimental treatments (P< 0.05). While neither extract had beneficial effects on animal performance, LAM supplementation had a positive influence on intestinal health through alterations in the gastrointestinal microbiome and increased butyrate production.


Assuntos
Bactérias/crescimento & desenvolvimento , Suplementos Nutricionais , Microbioma Gastrointestinal , Glucanos/administração & dosagem , Intestinos/microbiologia , Polissacarídeos/administração & dosagem , Alga Marinha/metabolismo , Sus scrofa/microbiologia , Fatores Etários , Ração Animal , Animais , Bactérias/classificação , Bactérias/metabolismo , Butiratos/metabolismo , Glucanos/isolamento & purificação , Valor Nutritivo , Polissacarídeos/isolamento & purificação , Sus scrofa/crescimento & desenvolvimento , Sus scrofa/metabolismo , Desmame
6.
J Anim Physiol Anim Nutr (Berl) ; 104(5): 1471-1483, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32767416

RESUMO

A 2 × 3 factorial design experiment was conducted to examine the effects of reducing dietary crude protein (CP) concentration and/or supplementation with zinc oxide (ZnO) or laminarin on faecal scores (FS) and the large intestinal microbiota post-weaning (PW). One hundred and forty-four pigs were assigned to (T1) 21% standard CP diet (SCP); (T2) SCP + ZnO (SCP ZnO); (T3) SCP + laminarin (SCP LAM); (T4) 18% low CP diet (LCP); (T5) LCP + ZnO (LCP ZnO); and (T6) LCP + laminarin (LCP LAM; n = 8 replicates/treatment). The LCP diet had no effect on FS (p > .05), it increased two measures of alpha diversity, reduced Bacteroidetes and increased Enterobacteriaceae and Helicobacteraceae in the colon relative to the SCP diet (p < .05). ZnO supplementation reduced FS and increased Ruminococcaceae compared with unsupplemented pigs (p < .05). ZnO supplementation increased the genera Frisingicoccus (p < .001), Lachnoclostridium (p < .05) and Peptoclostridium (p < .05) in the colon and reduced total caecal volatile fatty acids (VFA) concentrations compared with the unsupplemented and laminarin-supplemented pigs. Laminarin supplementation reduced FS compared with unsupplemented pigs but had no major effect on the microbiota compared with the unsupplemented pigs. There were CP concentration × additive interactions on both Firmicutes and Proteobacteria. Firmicutes were increased in the LCP ZnO group compared with the LCP group, but there was no difference between the SCP groups. Proteobacteria were reduced in the LCP ZnO group compared with the LCP and LCP LAM groups (p < .05), but there was no difference between the SCP groups. In conclusion, reducing CP did not improve FS; it increased the relative abundance of Enterobacteriaceae; however, it also increased bacterial diversity. Supplementation with ZnO and laminarin improved FS, although all groups had scores within the healthy range. ZnO altered the large intestinal microbiota and VFA concentrations; however, laminarin did not enhance these parameters, suggesting these compounds have differing modes of action.


Assuntos
Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Fezes/química , Microbioma Gastrointestinal/efeitos dos fármacos , Glucanos/farmacologia , Suínos/microbiologia , Óxido de Zinco/farmacologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Glucanos/administração & dosagem , Óxido de Zinco/administração & dosagem
7.
Mar Drugs ; 18(5)2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429425

RESUMO

This study examined the effects of dietary supplementation with laminarin or chitosan on colonic health in pigs challenged with dextran sodium sulphate (DSS). Weaned pigs were assigned to: (1) a basal diet (n = 22); (2) a basal diet + laminarin (n = 10); and (3) a basal diet + chitosan (n = 10). On d35, the basal group was split, creating four groups: (1) the basal diet (control); (2) the basal diet + DSS; (3) the basal diet + laminarin + DSS; and (4) the basal diet + chitosan + DSS. From d39-42, the pigs were orally challenged with DSS. On d44, colonic tissue/digesta samples were collected. The basal DSS group had reduced growth, higher pathology score and an increased expression of MMP1, IL13 and IL23 compared with the controls (p < 0.05); these parameters were similar between the DSS-challenged groups (p > 0.05). In the basal DSS group, the relative abundance of beneficial taxa including Prevotella and Roseburia were reduced while Escherichia/Shigella were increased, compared with the controls (p < 0.05). The relative abundance of Escherichia/Shigella was reduced and the molar proportions of acetate were increased in the laminarin DSS group compared with the basal DSS group (p < 0.01), suggesting that laminarin has potential to prevent pathogen proliferation and enhance the volatile fatty acid profile in the colon in a porcine model of colitis.


Assuntos
Quitosana/farmacologia , Colite/prevenção & controle , Suplementos Nutricionais , Glucanos/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Polissacarídeos/farmacologia , Substâncias Protetoras/farmacologia , Animais , Quitosana/administração & dosagem , Colite/induzido quimicamente , Dextranos , Modelos Animais de Doenças , Glucanos/administração & dosagem , Masculino , Polissacarídeos/administração & dosagem , Substâncias Protetoras/administração & dosagem , Distribuição Aleatória , Suínos
8.
Mar Drugs ; 18(3)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168972

RESUMO

Dietary supplementation with 300 ppm of a laminarin rich macroalgal extract reduces post-weaning intestinal dysfunction in pigs. A comprehensive analysis of the impact of laminarin on the intestinal microbiome during this period is essential to inform on the mode of action of this bioactivity. The objective of this study was to evaluate the effects of supplementing the diet of newly weaned pigs with 300 ppm of a laminarin rich extract, on animal performance, volatile fatty acids, and the intestinal microbiota using 16S rRNA gene sequencing. Pigs fed the laminarin-supplemented diet had higher average daily feed intake, growth rate, and body weight compared to pigs fed the control diet (p < 0.05). Pigs fed the laminarin-supplemented diet had reduced abundance of OTUs assigned to Enterobacteriaceae and increased abundance of OTUs assigned to the genus Prevotella (p < 0.05) compared to pigs fed the control diet. Enterobacteriaceae had negative relationships (p < 0.05) with average daily feed intake (ADFI), average daily gain (ADG), and butyric acid concentrations. In contrast, Prevotellaceae were positively correlated (p < 0.05) with ADFI, ADG, total VFA, acetic, propionic, butyric acids, and negatively correlated with isovaleric acid. Hence supplementation with a laminarin enriched extract potentially improves performance during the post-weaning period by promoting the proliferation of bacterial taxa such as Prevotella that favourably enhance nutrient digestion while reducing the load of potentially pathogenic bacterial taxa including Enterobacteriaceae.


Assuntos
Ceco/microbiologia , Colo/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Glucanos/farmacologia , Microalgas/química , Ração Animal , Animais , Suplementos Nutricionais , Enterobacteriaceae/efeitos dos fármacos , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Glucanos/química , RNA Ribossômico 16S/química , Suínos , Aumento de Peso
9.
Mar Drugs ; 17(12)2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31801301

RESUMO

This study examines the effects of increasing dietary inclusion levels of fucoidan, from a 44% fucoidan extract on the growth performance and intestinal health of pigs post-weaning (PW). Seventy-two newly weaned pigs (8.4 kg (SD 1.06)) were assigned to: (T1) basal diet (BD); (T2) BD + 125 ppm fucoidan; (T3) BD + 250 ppm fucoidan (8 pens/treatment). The appropriate quantity of a 44% fucoidan extract was included to achieve these inclusion levels. Faecal scores were recorded daily. On d15 PW, samples were collected from the intestinal tract from 1 pig/pen from the BD and BD + 250 ppm fucoidan groups. Pigs supplemented with 250 ppm fucoidan had improved faecal scores and increased concentrations of total volatile fatty acids and propionate in the colon (p < 0.05). The fucoidan-rich extract reduced the expression of CLDN5 (duodenum), SCL5A1/SGLT1 and SI (jejunum) and TJP1, FABP2, and SLC5A1 (ileum) (p < 0.05). The extract reduced the relative abundance of Prevotella and Lachnospiraceae (p < 0.05) and increased the abundance of Helicobacter (p < 0.01) in the caecum. However, no negative impact on growth performance or small intestinal morphology was observed. Thus, the inclusion of 250 ppm fucoidan improves faecal consistency without affecting growth performance and therefore warrants further investigation as a supplement for the prevention of PW diarrhoea under more challenging commercial conditions.


Assuntos
Ascophyllum/química , Intestinos/efeitos dos fármacos , Polissacarídeos/farmacologia , Animais , Suplementos Nutricionais , Ácidos Graxos Voláteis/metabolismo , Polissacarídeos/isolamento & purificação , Suínos , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...