Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(24): 24802-24813, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-37890869

RESUMO

Structural characterization is crucial to understanding protein function. Compared with X-ray diffraction methods, electron crystallography can be performed on nanometer-sized crystals and can provide additional information from the resulting Coulomb potential map. Whereas electron crystallography has successfully resolved three-dimensional structures of vitrified protein crystals, its widespread use as a structural biology tool has been limited. One main reason is the fragility of such crystals. Protein crystals can be easily damaged by mechanical stress, change in temperature, or buffer conditions as well as by electron irradiation. This work demonstrates a methodology to preserve these nanocrystals in their natural environment at room temperature for electron diffraction experiments as an alternative to existing cryogenic techniques. Lysozyme crystals in their crystallization solution are hermetically sealed via graphene-coated grids, and their radiation damage is minimized by employing a low-dose data collection strategy in combination with a hybrid-pixel direct electron detector. Diffraction patterns with reflections of up to 3 Å are obtained and successfully indexed using a template-matching algorithm. These results demonstrate the feasibility of in situ protein electron diffraction. The method described will also be applicable to structural studies of hydrated nanocrystals important in many research and technological developments.


Assuntos
Elétrons , Proteínas , Temperatura , Proteínas/química , Cristalografia por Raios X , Difração de Raios X
2.
J Phys Chem Lett ; 14(16): 3961-3969, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37078694

RESUMO

Understanding the defect structure is fundamental to correlating the structure and properties of materials. However, little is known about the defects of soft matter at the nanoscale beyond their external morphology. We report here on the molecular-level structural details of kink defects of cellulose nanocrystals (CNCs) based on a combination of experimental and theoretical methods. Low-dose scanning nanobeam electron diffraction analysis allowed for correlation of the local crystallographic information and nanoscale morphology and revealed that the structural anisotropy governed the kink formation of CNCs. We identified two bending modes along different crystallographic directions with distinct disordered structures at kink points. The drying strongly affected the external morphology of the kinks, resulting in underestimating the kink population in the standard dry observation conditions. These detailed defect analyses improve our understanding of the structural heterogeneity of nanocelluloses and contribute to the future exploitation of soft matter defects.

3.
Ultramicroscopy ; 238: 113536, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35567967

RESUMO

The properties of polycrystalline materials are related to their microstructures and hence a complete description, including size, shape, and orientation of the grains, is necessary to understand the behavior of materials. Here, we use Scanning Precession Electron Diffraction (SPED) in the Transmission Electron Microscope (TEM) combined with a tilt series to reconstruct individual grains in 3D within a polycrystalline dual-phase cold wire-drawn pearlitic steel sample. Nanoscale ferrite grains and intragranular cementite particles were indexed using an Automated Crystallographic Orientation Mapping (ACOM) tool for each tilt dataset. The grain orientations were tracked through the tilt datasets and projections of the individual grains were reconstructed from the diffraction data using an orientation-specific Virtual Dark Field (VDF) approach for tomographic reconstruction. The algorithms used to process and reconstruct such datasets are presented. These algorithms represent an extension to the ACOM approach that may be straightforwardly applied to other multi-phase polycrystalline materials to enable 3D spatial and orientation reconstructions.

4.
Scanning ; 2019: 4870695, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31263516

RESUMO

To understand in-depth material properties, manufacturing, and conservation in cultural heritage artefacts, there is a strong need for advanced characterization tools that enable analysis down to the nanometric scale. Transmission electron microscopy (TEM) and electron diffraction (ED) techniques, like 3D precession electron diffraction tomography and ASTAR phase/orientation mapping, are proposed to study cultural heritage materials at nanoscale. In this work, we show how electron crystallography in TEM helps to determine precise structural information and phase/orientation distribution of various pigments in cultural heritage materials from various historical periods like Greek amphorisks, Roman glass tesserae, and pre-Hispanic Maya mural paintings. Such TEM-based methods can be an alternative to synchrotron techniques and can allow distinguishing accurately different crystalline phases even in cases of identical or very close chemical compositions at the nanometric scale.

5.
Nanotechnology ; 27(44): 445712, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27688268

RESUMO

Identifying and mapping the crystalline phases and orientation relationships on the local scale in core-shell ZnO nanowire heterostructures are of primary importance to improve the interface quality, which governs the performances of the nanoscale devices. However, this represents a major difficulty, especially when the expected polytypes exhibit very similar properties as in the case of CdSe. In the present work, we address that issue in ZnO nanowire heterostructures involving a uniform and highly conformal CdSe shell grown by molecular beam epitaxy. It is shown by x-ray diffraction and Raman spectroscopy through the occurrence of the (101̄0) and (101̄1) diffraction peaks and of the [Formula: see text] mode at 34 cm-1, respectively, that the CdSe shell is mostly crystallized into the wurtzite phase. By using automated crystal phase and orientation mapping with precession (ASTAR) in a transmission electron microscope and thus by benefiting from highly precise electron diffraction patterns, the CdSe shell is found to crystallize also into the minority zinc blende phase. The wurtzite CdSe shell is epitaxially grown on the top of ZnO nanowires, and some specific orientation relationships are mapped and revealed when grown on their vertical sidewalls. Zinc blende CdSe domains are also formed exclusively in the center of wurtzite CdSe grains located on the vertical sidewalls; both wurtzite and zinc blende CdSe crystalline phases have a strong orientation relationship. These findings reveal that ASTAR is a powerful technique to elucidate the structural properties on the local scale and to gain a deeper insight into their crystalline phases and orientation relationships, which is highly promising for many types of semiconducting nanowire heterostructures.

6.
Ultramicroscopy ; 163: 31-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26866276

RESUMO

Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast.

7.
Microsc Microanal ; 21(2): 422-35, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25801740

RESUMO

A new approach for measurement of local thickness and characterization of grain boundaries is presented. The method is embodied in a software tool that helps to find and set sample orientations useful for high-resolution transmission electron microscopic (HRTEM) examination of grain boundaries in polycrystalline thin films. The novelty is the simultaneous treatment of the two neighboring grains and orienting both grains and the boundary plane simultaneously. The same metric matrix-based formalism is used for all crystal systems. Input into the software tool includes orientation data for the grains in question, which is determined automatically for a large number of grains by the commercial ASTAR program. Grain boundaries suitable for HRTEM examination are automatically identified by our software tool. Individual boundaries are selected manually for detailed HRTEM examination from the automatically identified set. Goniometer settings needed to observe the selected boundary in HRTEM are advised by the software. Operation is demonstrated on examples from cubic and hexagonal crystal systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...