Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 10(2): 64, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683846

RESUMO

There was an error introduced into Figures 4, 5, and 7 during the proofing stage which has since been corrected.

2.
Cell Death Dis ; 9(11): 1095, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367030

RESUMO

The mitogen-activated protein kinase (MAPK) pathway has been shown to be involved in both neurodevelopment and neurodegeneration. c-Jun N-terminal kinase (JNK), a MAPK important in retinal development and after optic nerve crush injury, is regulated by two upstream kinases: MKK4 and MKK7. The specific requirements of MKK4 and MKK7 in retinal development and retinal ganglion cell (RGC) death after axonal injury, however, are currently undefined. Optic nerve injury is an important insult in many neurologic conditions including traumatic, ischemic, inflammatory, and glaucomatous optic neuropathies. Mice deficient in Mkk4, Mkk7, and both Mkk4 and Mkk7 were generated. Immunohistochemistry was used to study the distribution and structure of retinal cell types and to assess RGC survival after optic nerve injury (mechanical controlled optic nerve crush (CONC)). Adult Mkk4- and Mkk7-deficient retinas had all retinal cell types, and with the exception of small areas of disrupted photoreceptor lamination in Mkk4-deficient mice, the retinas of both mutants were grossly normal. Deficiency of Mkk4 or Mkk7 reduced JNK signaling in RGCs after axonal injury and resulted in a significantly greater percentage of surviving RGCs 35 days after CONC as compared to wild-type controls (Mkk4: 51.5%, Mkk7: 29.1%, WT: 15.2%; p < 0.001). Combined deficiency of Mkk4 and Mkk7 caused failure of optic nerve formation, irregular retinal axonal trajectories, disruption of retinal lamination, clumping of RGC bodies, and dendritic fasciculation of dopaminergic amacrine cells. These results suggest that MKK4 and MKK7 may serve redundant and unique roles in molecular signaling important for retinal development and injury response following axonal insult.


Assuntos
Morte Celular , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase 7/metabolismo , Traumatismos do Nervo Óptico/complicações , Retina/crescimento & desenvolvimento , Células Ganglionares da Retina/metabolismo , Células Amácrinas/metabolismo , Animais , Fasciculação Axônica , Sobrevivência Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Compressão Nervosa , Nervo Óptico/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Retina/metabolismo , Transdução de Sinais
3.
PLoS One ; 13(5): e0197048, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29738572

RESUMO

Heterozygous Bmp4 mutations in humans and mice cause severe ocular anterior segment dysgenesis (ASD). Abnormalities include pupil displacement, corneal opacity, iridocorneal adhesions, and variable intraocular pressure, as well as some retinal and vascular defects. It is presently not known what source of BMP4 is responsible for these defects, as BMP4 is expressed in several developing ocular and surrounding tissues. In particular, BMP4 is expressed in the ciliary margins of the optic cup which give rise to anterior segment structures such as the ciliary body and iris, making it a good candidate for the required source of BMP4 for anterior segment development. Here, we test whether ciliary margin-derived BMP4 is required for ocular development using two different conditional knockout approaches. In addition, we compared the conditional deletion phenotypes with Bmp4 heterozygous null mice. Morphological, molecular, and functional assays were performed on adult mutant mice, including histology, immunohistochemistry, in vivo imaging, and intraocular pressure measurements. Surprisingly, in contrast to Bmp4 heterozygous mutants, our analyses revealed that the anterior and posterior segments of Bmp4 conditional knockouts developed normally. These results indicate that ciliary margin-derived BMP4 does not have a major role in ocular development, although subtle alterations could not be ruled out. Furthermore, we demonstrated that the anterior and posterior phenotypes observed in Bmp4 heterozygous animals showed a strong propensity to co-occur, suggesting a common, non-cell autonomous source for these defects.


Assuntos
Segmento Anterior do Olho/crescimento & desenvolvimento , Proteína Morfogenética Óssea 4/genética , Corpo Ciliar/crescimento & desenvolvimento , Animais , Segmento Anterior do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Heterozigoto , Humanos , Pressão Intraocular/fisiologia , Iris/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Mutação
4.
Exp Eye Res ; 170: 81-91, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29452107

RESUMO

The trabecular meshwork (TM), a tissue residing in the iridocorneal angle of the eye, is the primary site of aqueous humor outflow and often develops abnormally in children with anterior segment dysgenesis (ASD). However, the cellular mechanisms underlying both normal and pathophysiological TM formation are poorly understood. Here, we improve the characterization of TM development via morphological and molecular analyses. We first assessed the TM of wild-type C57BL/6J mice at multiple time points throughout development (E15.5-P21). The morphology of TM cells, rate of cell division, presence of apoptotic cell death, and age of onset of an established TM marker (αSMA) were each assessed in the developing iridocorneal angle. We discovered that TM cells are identifiable histologically at P1, which coincided with both the onset of αSMA expression and a significant decrease in TM precursor cell proliferation. Significant apoptotic cell death was not detected during TM development. These findings were then used to assess two mouse models of ASD. Jag1 and Bmp4 heterozygous null mice display ASD phenotypes in the adult, including TM hypoplasia and corneal adherence to the iris. We further discovered that both mutants exhibited similar patterns of developmental TM dysgenesis at P1, P5, and P10. Our data indicate that P1 is an important time point in TM development and that TM dysgenesis in Jag1 and Bmp4 heterozygous null mice likely results from impaired TM cell migration and/or differentiation.


Assuntos
Segmento Anterior do Olho/anormalidades , Modelos Animais de Doenças , Anormalidades do Olho/patologia , Morfogênese/fisiologia , Malha Trabecular/embriologia , Actinas/metabolismo , Animais , Segmento Anterior do Olho/metabolismo , Apoptose , Proteína Morfogenética Óssea 4/genética , Proliferação de Células , Anormalidades do Olho/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Pressão Intraocular , Proteína Jagged-1/genética , Camundongos , Camundongos Endogâmicos C57BL , Microscopia com Lâmpada de Fenda , Malha Trabecular/metabolismo
5.
Exp Eye Res ; 141: 42-56, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26116903

RESUMO

While all forms of glaucoma are characterized by a specific pattern of retinal ganglion cell death, they are clinically divided into several distinct subclasses, including normal tension glaucoma, primary open angle glaucoma, congenital glaucoma, and secondary glaucoma. For each type of glaucoma there are likely numerous molecular pathways that control susceptibility to the disease. Given this complexity, a single animal model will never precisely model all aspects of all the different types of human glaucoma. Therefore, multiple animal models have been utilized to study glaucoma but more are needed. Because of the powerful genetic tools available to use in the laboratory mouse, it has proven to be a highly useful mammalian system for studying the pathophysiology of human disease. The similarity between human and mouse eyes coupled with the ability to use a combination of advanced cell biological and genetic tools in mice have led to a large increase in the number of studies using mice to model specific glaucoma phenotypes. Over the last decade, numerous new mouse models and genetic tools have emerged, providing important insight into the cell biology and genetics of glaucoma. In this review, we describe available mouse genetic models that can be used to study glaucoma-relevant disease/pathobiology. Furthermore, we discuss how these models have been used to gain insights into ocular hypertension (a major risk factor for glaucoma) and glaucomatous retinal ganglion cell death. Finally, the potential for developing new mouse models and using advanced genetic tools and resources for studying glaucoma are discussed.


Assuntos
Glaucoma/genética , Pressão Intraocular , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...