Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neoplasia ; 52: 100999, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38631214

RESUMO

In many tumors pronounced extracellular acidosis resulting from glycolytic metabolism is found. Since several environmental stress factors affect the mitochondrial activity the aim of the study was to analyze the impact of acidosis on cellular oxygen consumption and which signaling pathways may be involved in the regulation. In two tumor cell lines and normal fibroblasts cellular oxygen consumption rate (OCR) and mitochondrial function were measured after 3 h at pH 6.6. Besides the activation of ERK1/2, p38 and PI3K signaling in the cytosolic and mitochondrial compartment, the mitochondrial structure and proteins related to mitochondria fission were analyzed. The acidic extracellular environment increased OCR in tumor cells but not in fibroblasts. In parallel, the mitochondrial membrane potential increased at low pH. In both tumor lines (but not in fibroblasts), the phosphorylation of ERK1/2 and PI3K/Akt was significantly increased, and both cascades were involved in OCR modulation. The activation of signaling pathways was located predominantly in the mitochondrial compartment of the cells. At low pH, the mitochondrial structure in tumor cells showed structural changes related to elongation whereas mitochondria fragmentation was reduced indicating mitochondria fusion. However, these morphological changes were not related to ERK1/2 or PI3K signaling. Acidic stress seems to induce an increased oxygen consumption, which might further aggravate tumor hypoxia. Low pH also induces mitochondria fusion that is not mediated by ERK1/2 or PI3K signaling. The mechanism by which these signaling cascades modulate the respiratory activity of tumor cells needs further investigation.


Assuntos
Acidose , Fibroblastos , Mitocôndrias , Consumo de Oxigênio , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Humanos , Acidose/metabolismo , Acidose/patologia , Mitocôndrias/metabolismo , Fibroblastos/metabolismo , Concentração de Íons de Hidrogênio , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Potencial da Membrana Mitocondrial , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação , Neoplasias/metabolismo , Neoplasias/patologia
2.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069241

RESUMO

Many tumors are characterized by marked extracellular acidosis due to increased glycolytic metabolism, which affects gene expression and thereby tumor biological behavior. At the same time, acidosis leads to altered expression of several microRNAs (Mir7, Mir183, Mir203, Mir215). The aim of this study was to analyze whether the acidosis-induced changes in cytokines and tumor-related genes are mediated via pH-sensitive microRNAs. Therefore, the expression of Il6, Nos2, Ccl2, Spp1, Tnf, Acat2, Aox1, Crem, Gls2, Per3, Pink1, Txnip, and Ypel3 was examined in acidosis upon simultaneous transfection with microRNA mimics or antagomirs in two tumor lines in vitro and in vivo. In addition, it was investigated whether microRNA expression in acidosis is affected via known pH-sensitive signaling pathways (MAPK, PKC, PI3K), via ROS, or via altered intracellular Ca2+ concentration. pH-dependent microRNAs were shown to play only a minor role in modulating gene expression. Individual genes (e.g., Ccl2, Txnip, Ypel3) appear to be affected by Mir183, Mir203, or Mir215 in acidosis, but these effects are cell line-specific. When examining whether acid-dependent signaling affects microRNA expression, it was found that Mir203 was modulated by MAPK and ROS, Mir7 was affected by PKC, and Mir215 was dependent on the intracellular Ca2+ concentration. Mir183 could be increased by ROS scavenging. These correlations could possibly result in new therapeutic approaches for acidotic tumors.


Assuntos
Acidose , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Neoplasias/genética , Acidose/genética , Acidose/metabolismo , Expressão Gênica , Linhagem Celular Tumoral
3.
Neoplasia ; 23(12): 1275-1288, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34781085

RESUMO

BACKGROUND: The acidic extracellular environment of tumors has been shown to affect the malignant progression of tumor cells by modulating proliferation, cell death or metastatic potential. The aim of the study was to analyze whether acidosis-dependent miRNAs play a role in the signaling cascade from low pH through changes in gene expression to functional properties of tumors in vitro and in vivo. METHODS: In two experimental tumor lines the expression of 13 genes was tested under acidic conditions in combination with overexpression or downregulation of 4 pH-sensitive miRNAs (miR-7, 183, 203, 215). Additionally, the impact on proliferation, cell cycle distribution, apoptosis, necrosis, migration and cell adhesion were measured. RESULTS: Most of the genes showed a pH-dependent expression, but only a few of them were additionally regulated by miRNAs in vitro (Brip1, Clspn, Rif1) or in vivo (Fstl, Tlr5, Txnip). Especially miR-215 overexpression was able to counteract the acidosis effect in some genes. The impact on proliferation was cell line-dependent and most pronounced with overexpression of miR-183 and miR-203, whereas apoptosis and necrosis were pH-dependent but not influenced by miRNAs. The tumor growth was markedly regulated by miR-183 and miR-7. In addition, acidosis had a strong effect on cell adhesion, which could be modulated by miR-7, miR-203 and miR-215. CONCLUSIONS: The results indicate that the acidosis effect on gene expression and functional properties of tumor cells could be mediated by pH-dependent miRNAs. Many effects were cell line dependent and therefore do not reflect universal intracellular signaling cascades. However, the role of miRNAs in the adaptation to an acidic environment may open new therapeutic strategies.


Assuntos
Acidose , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neoplasias Experimentais , Animais , Masculino , Ratos , Ratos Wistar
4.
Adv Exp Med Biol ; 1269: 157-161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33966211

RESUMO

In comparison to normal tissue, solid tumors show an acidic extracellular pH, which results from hypoxia-induced glycolytic metabolism and the Warburg effect. Since acidosis modulates the expression of different microRNAs (e.g., miR-7, miR-183, miR-203, miR-215), microRNAs and their targets might be mediators between tumor acidosis and malignant behavior. The aim of this study was to investigate how modulation of these microRNAs affects the expression of their targets (Crem, cAMP-responsive element modulator; Gls2, glutaminase 2; Txnip, thioredoxin-interacting protein) in experimental tumors in vivo and whether these changes are acidosis dependent. The study was performed in two experimental tumor lines of the rat (AT-1 prostate carcinoma, Walker-256 mammary carcinoma). The results showed that all three targets were regulated by acidosis in vivo, Crem and Gls2 being downregulated and Txnip upregulated in both models. In AT-1 tumors at normal tumor pH, miR-203 overexpression increased Txnip expression by about 75%, whereas in Walker-256 tumors, miR-7 reduced protein expression. In more acidic tumors, no impact of microRNAs on Txnip expression was seen. On the other hand, Gls2 was significantly increased in acidic tumors by miR-183 or miR-7 overexpression (cell line dependent). As this increase was not present under control conditions, an acidosis-dependent effect can be assumed. These results indicate that tumor acidosis modulates the expression of targets of pH-sensitive microRNAs in experimental tumors. Especially the protein expression of Gls2 might be regulated via changes of microRNAs, which then affects the malignant progression of tumors.


Assuntos
Acidose , MicroRNAs , Neoplasias Experimentais , Neoplasias da Próstata , Acidose/genética , Animais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Neoplasias da Próstata/genética , Ratos
5.
J Exp Clin Cancer Res ; 40(1): 10, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407762

RESUMO

BACKGROUND: The low extracellular pH (pHe) of tumors resulting from glycolytic metabolism is a stress factor for the cells independent from concomitant hypoxia. The aim of the study was to analyze the impact of acidic pHe on gene expression on mRNA and protein level in two experimental tumor lines in vitro and in vivo and were compared to hypoxic conditions as well as combined acidosis+hypoxia. METHODS: Gene expression was analyzed in AT1 prostate and Walker-256 mammary carcinoma of the rat by Next Generation Sequencing (NGS), qPCR and Western blot. In addition, the impact of acidosis on tumor cell migration, adhesion, proliferation, cell death and mitochondrial activity was analyzed. RESULTS: NGS analyses revealed that 147 genes were uniformly regulated in both cell lines (in vitro) and 79 genes in both experimental tumors after 24 h at low pH. A subset of 25 genes was re-evaluated by qPCR and Western blot. Low pH consistently upregulated Aox1, Gls2, Gstp1, Ikbke, Per3, Pink1, Tlr5, Txnip, Ypel3 or downregulated Acat2, Brip1, Clspn, Dnajc25, Ercc6l, Mmd, Rif1, Zmpste24 whereas hypoxia alone led to a downregulation of most of the genes. Direct incubation at low pH reduced tumor cell adhesion whereas acidic pre-incubation increased the adhesive potential. In both tumor lines acidosis induced a G1-arrest (in vivo) of the cell cycle and a strong increase in necrotic cell death (but not in apoptosis). The mitochondrial O2 consumption increased gradually with decreasing pH. CONCLUSIONS: These data show that acidic pHe in tumors plays an important role for gene expression independently from hypoxia. In parallel, acidosis modulates functional properties of tumors relevant for their malignant potential and which might be the result of pH-dependent gene expression.


Assuntos
Acidose/metabolismo , Hipóxia Celular/fisiologia , Regulação Neoplásica da Expressão Gênica/genética , Animais , Proliferação de Células , Humanos , Masculino , Ratos
6.
Neoplasia ; 21(5): 450-458, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30953950

RESUMO

Epithelial-to-mesenchymal transition (EMT) is an important process of tumor progression associated with increased metastatic potential. EMT can be activated by external triggers such as cytokines or metabolic parameters (e.g. hypoxia). Since extracellular acidosis is a common finding in tumors, the aim of the study is to analyze its impact on the expression of EMT markers in vitro and in vivo as well as the functional impact on cell adhesion. Therefore, three tumor and two normal epithelial cell lines were incubated for 24 h at pH 6.6 and the expression of EMT markers was studied. In addition, mRNA expression of transcription and metabolic factors related to EMT was measured as well as the functional impact on cell adhesion, either during acidic incubation or after priming cells in an acidic milieu. E-cadherin and N-cadherin were down-regulated in all tumor and normal cell lines studied, whereas vimentin expression increased in only two tumor and one normal cell line. Down-regulation of the cadherins was seen in total protein and to a lesser extent in surface protein. In vivo an increase in N-cadherin and vimentin expression was found. Acidosis up-regulated Twist1 and Acsl1 but down-regulated fumarate hydratase (Fh). Cell adhesion during acidic incubation decreased in AT1 prostate carcinoma cells whereas preceding acidic priming increased their subsequent adhesion. Low tumor pH is able to modulate the expression EMT-related proteins and by this may affect the stability of the tissue structure.


Assuntos
Acidose/fisiopatologia , Biomarcadores/metabolismo , Caderinas/metabolismo , Adesão Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Vimentina/metabolismo , Animais , Caderinas/genética , Humanos , Masculino , Ratos , Vimentina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...