Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Polym Mater ; 6(13): 7918-7925, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39022348

RESUMO

With an ever-increasing annual production of polymers and the accumulation of polymer waste leading to progressively adverse environmental consequences, it has become important that all polymers can be efficiently recycled at the end of their life cycle. Especially thermosets are intrinsically difficult to recycle because of their permanent covalent cross-links. A possible solution is to switch from using thermosets to covalent adaptable networks, sparking the rapid development of novel dynamic covalent chemistries and derived polymer materials. Next to development of these innovative polymer materials, there is also an evident advantage of merging the virtues of covalent adaptable networks with the proven material properties of widely used commodity plastics, by introducing dynamic covalent bonds in these original thermoplastic materials to obtain recyclable thermosets. Here we report the synthesis and characterization of a polystyrene polymer, functionalized with TetraAzaADamantanes and cross-linked with dynamic covalent boronic esters. The material properties were characterized for different degrees of cross-linking. The materials showed good solvent resistance with a high remaining insoluble fraction. In line with the typical behavior of traditional covalent adaptable networks, the prepared polystyrene-based boronate-TetraAzaADamantane materials were able to undergo stress relaxation. The material relaxation was also shown to be tunable by mixing with an acid catalyst. Lastly, the materials could be recycled at least 2 times.

2.
Chem Commun (Camb) ; 57(9): 1149-1152, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33411860

RESUMO

Conventional synthesis of polyurethane (PU) often involves the use of inherently toxic and overly moisture-sensitive isocyanates. Herein, we report the preparation of a self-healable hydrophobic polymer network having urethane linkages via a facile non-isocyanate route based on carbonylimidazole-amine reaction and dynamic Diels-Alder (DA) 'click' reaction based on furan-maleimide cycloaddition. This isocyanate-free DA 'clicked' polymer material showed excellent self-healing and hydrophobic characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA