Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cogn Neurodyn ; 18(2): 757-767, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38699625

RESUMO

The ability to learn by observing the behavior of others is energy efficient and brings high survival value, making it an important learning tool that has been documented in a myriad of species in the animal kingdom. In the laboratory, rodents have proven useful models for studying different forms of observational learning, however, the most robust learning paradigms typically rely on aversive stimuli, like foot shocks, to drive the social acquisition of fear. Non-fear-based tasks have also been used but they rarely succeed in having observer animals perform a new behavior de novo. Consequently, little known regarding the cellular mechanisms supporting non-aversive types of learning, such as visuomotor skill acquisition. To address this we developed a reward-based observational learning paradigm in adult rats, in which observer animals learn to tap lit spheres in a specific sequence by watching skilled demonstrators, with successful trials leading to rewarding intracranial stimulation in both observers and performers. Following three days of observation and a 24-hour delay, observer animals outperformed control animals on several metrics of task performance and efficiency, with a subset of observers demonstrating correct performance immediately when tested. This paradigm thus introduces a novel tool to investigate the neural circuits supporting observational learning and memory for visuomotor behavior, a phenomenon about which little is understood, particularly in rodents.

2.
Front Neuroanat ; 17: 1188808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228422

RESUMO

Introduction: The mammalian visual system can be broadly divided into two functional processing pathways: a dorsal stream supporting visually and spatially guided actions, and a ventral stream enabling object recognition. In rodents, the majority of visual signaling in the dorsal stream is transmitted to frontal motor cortices via extrastriate visual areas surrounding V1, but exactly where and to what extent V1 feeds into motor-projecting visual regions is not well known. Methods: We employed a dual labeling strategy in male and female mice in which efferent projections from V1 were labeled anterogradely, and motor-projecting neurons in higher visual areas were labeled with retrogradely traveling adeno-associated virus (rAAV-retro) injected in M2. We characterized the labeling in both flattened and coronal sections of dorsal cortex and made high-resolution 3D reconstructions to count putative synaptic contacts in different extrastriate areas. Results: The most pronounced colocalization V1 output and M2 input occurred in extrastriate areas AM, PM, RL and AL. Neurons in both superficial and deep layers in each project to M2, but high resolution volumetric reconstructions indicated that the majority of putative synaptic contacts from V1 onto M2-projecting neurons occurred in layer 2/3. Discussion: These findings support the existence of a dorsal processing stream in the mouse visual system, where visual signals reach motor cortex largely via feedforward projections in anteriorly and medially located extrastriate areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...