Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 20(4): 671-91, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21214654

RESUMO

Understanding the molecular basis of how new species arise is a central question and prime challenge in evolutionary biology and includes understanding how genomes diversify. Eukaryotic cells possess an integrated compartmentalized genetic system of endosymbiotic ancestry. The cellular subgenomes in nucleus, mitochondria and plastids communicate in a complex way and co-evolve. The application of hybrid and cybrid technologies, most notably those involving interspecific exchanges of plastid and nuclear genomes, has uncovered a multitude of species-specific nucleo-organelle interactions. Such interactions can result in plastome-genome incompatibilities, which can phenotypically often be recognized as hybrid bleaching, hybrid variegation or disturbance of the sexual phase. The plastid genome, because of its relatively low number of genes, can serve as a valuable tool to investigate the origin of these incompatibilities. In this article, we review progress on understanding how plastome-genome co-evolution contributes to speciation. We genetically classify incompatible phenotypes into four categories. We also summarize genetic, physiological and environmental influence and other possible selection forces acting on plastid-nuclear co-evolution and compare taxa providing molecular access to the underlying loci. It appears that plastome-genome incompatibility can establish hybridization barriers, comparable to the Dobzhansky-Muller model of speciation processes. Evidence suggests that the plastid-mediated hybridization barriers associated with hybrid bleaching primarily arise through modification of components in regulatory networks, rather than of complex, multisubunit structures themselves that are frequent targets.


Assuntos
Especiação Genética , Plastídeos/genética , Evolução Molecular , Genoma de Planta , Genomas de Plastídeos , Hibridização Genética , Fenótipo , Plantas/genética
2.
Mol Genet Genomics ; 283(1): 35-47, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19911199

RESUMO

Plastid genomes (plastomes) are part of the integrated compartmentalised genetic system of photoautotrophic eukaryotes. They are highly redundant and generally dispersed in several regions (nucleoids) within organelles. DNA quantities and number of DNA-containing regions per plastid vary and are developmentally regulated in a way not yet understood. Reliable quantitative data describing these patterns are scarce. We present a protocol to isolate fractions of pure plastids with varying average sizes from leaflets (8 microm average diameter, corresponding from approximately a dozen to 330 genome equivalents per organelle and on average four to seven copies per nucleoid. The ratio of plastid/nuclear DNA changed continuously during leaf development from as little as 0.4% to about 20% in fully developed leaves. On the other hand, mesophyll cells of mature leaves differing in ploidy (di-, tri- and tetraploid) appeared to maintain a relatively constant nuclear genome/plastome ratio, equivalent to about 1,700 copies per C-value.


Assuntos
Cloroplastos/química , DNA de Plantas/análise , Genomas de Plastídeos , Beta vulgaris/química , Beta vulgaris/genética , Fracionamento Celular , Cloroplastos/genética , Corantes Fluorescentes/química , Indóis/química , Microscopia de Fluorescência
3.
Genome ; 51(11): 952-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18956028

RESUMO

The genus Oenothera shows an intriguing extent of permanent translocation heterozygosity. Reciprocal translocations of chromosome arms in species or populations result in various kinds of chromosome multivalents in diakinesis. Early meiotic events conditioning such chromosome behaviour are poorly understood. We found a surprising uniformity of the leptotene-diplotene period, regardless of the chromosome configuration at diakinesis (ring of 14, 7 bivalents, mixture of bivalents and multivalents). It appears that the earliest chromosome interactions at Oenothera meiosis are untypical, since they involve pericentromeric regions. During early leptotene, proximal chromosome parts cluster and form a highly polarized Rabl configuration. Telomeres associated in pairs were seen at zygotene. The high degree of polarization of meiotic nuclei continues for an exceptionally long period, i.e., during zygotene-pachytene into the diplotene contraction stage. The Rabl-polarized meiotic architecture and clustering of pericentromeres suggest a high complexity of karyotypes, not only in structural heterozygotes but also in bivalent-forming homozygous species.


Assuntos
Cromossomos de Plantas/genética , Meiose/genética , Oenothera/genética , Pareamento Cromossômico , Cromossomos de Plantas/ultraestrutura , Cariotipagem , Prófase Meiótica I/genética , Oenothera/ultraestrutura
4.
Genetics ; 180(3): 1289-306, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18791241

RESUMO

The genus Oenothera has an outstanding scientific tradition. It has been a model for studying aspects of chromosome evolution and speciation, including the impact of plastid nuclear co-evolution. A large collection of strains analyzed during a century of experimental work and unique genetic possibilities allow the exchange of genetically definable plastids, individual or multiple chromosomes, and/or entire haploid genomes (Renner complexes) between species. However, molecular genetic approaches for the genus are largely lacking. In this study, we describe the development of efficient PCR-based marker systems for both the nuclear genome and the plastome. They allow distinguishing individual chromosomes, Renner complexes, plastomes, and subplastomes. We demonstrate their application by monitoring interspecific exchanges of genomes, chromosome pairs, and/or plastids during crossing programs, e.g., to produce plastome-genome incompatible hybrids. Using an appropriate partial permanent translocation heterozygous hybrid, linkage group 7 of the molecular map could be assigned to chromosome 9.8 of the classical Oenothera map. Finally, we provide the first direct molecular evidence that homologous recombination and free segregation of chromosomes in permanent translocation heterozygous strains is suppressed.


Assuntos
Cromossomos de Plantas/genética , Marcadores Genéticos/genética , Oenothera/genética , Plastídeos/genética , Núcleo Celular/genética , Mapeamento Cromossômico , DNA de Plantas/genética , Genoma de Planta/genética , Genomas de Plastídeos/genética , Genótipo , Dados de Sequência Molecular , Oenothera/crescimento & desenvolvimento , Recombinação Genética
5.
Mol Biol Evol ; 25(9): 2019-30, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18614526

RESUMO

A unique combination of genetic features and a rich stock of information make the flowering plant genus Oenothera an appealing model to explore the molecular basis of speciation processes including nucleus-organelle coevolution. From representative species, we have recently reported complete nucleotide sequences of the 5 basic and genetically distinguishable plastid chromosomes of subsection Oenothera (I-V). In nature, Oenothera plastid genomes are associated with 6 distinct, either homozygous or heterozygous, diploid nuclear genotypes of the 3 basic genomes A, B, or C. Artificially produced plastome-genome combinations that do not occur naturally often display interspecific plastome-genome incompatibility (PGI). In this study, we compare formal genetic data available from all 30 plastome-genome combinations with sequence differences between the plastomes to uncover potential determinants for interspecific PGI. Consistent with an active role in speciation, a remarkable number of genes have high Ka/Ks ratios. Different from the Solanacean cybrid model Atropa/tobacco, RNA editing seems not to be relevant for PGIs in Oenothera. However, predominantly sequence polymorphisms in intergenic segments are proposed as possible sources for PGI. A single locus, the bidirectional promoter region between psbB and clpP, is suggested to contribute to compartmental PGI in the interspecific AB hybrid containing plastome I (AB-I), consistent with its perturbed photosystem II activity.


Assuntos
Cloroplastos/genética , Oenothera/genética , Sequência de Bases , Cloroplastos/classificação , Mapeamento Cromossômico , DNA Intergênico , DNA de Plantas , Evolução Molecular , Etiquetas de Sequências Expressas , Especiação Genética , Genoma de Planta , Genótipo , Oenothera/classificação , Oenothera/ultraestrutura , Edição de RNA , Seleção Genética
6.
Nucleic Acids Res ; 36(7): 2366-78, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18299283

RESUMO

The flowering plant genus Oenothera is uniquely suited for studying molecular mechanisms of speciation. It assembles an intriguing combination of genetic features, including permanent translocation heterozygosity, biparental transmission of plastids, and a general interfertility of well-defined species. This allows an exchange of plastids and nuclei between species often resulting in plastome-genome incompatibility. For evaluation of its molecular determinants we present the complete nucleotide sequences of the five basic, genetically distinguishable plastid chromosomes of subsection Oenothera (=Euoenothera) of the genus, which are associated in distinct combinations with six basic genomes. Sizes of the chromosomes range from 163 365 bp (plastome IV) to 165 728 bp (plastome I), display between 96.3% and 98.6% sequence similarity and encode a total of 113 unique genes. Plastome diversification is caused by an abundance of nucleotide substitutions, small insertions, deletions and repetitions. The five plastomes deviate from the general ancestral design of plastid chromosomes of vascular plants by a subsection-specific 56 kb inversion within the large single-copy segment. This inversion disrupted operon structures and predates the divergence of the subsection presumably 1 My ago. Phylogenetic relationships suggest plastomes I-III in one clade, while plastome IV appears to be closest to the common ancestor.


Assuntos
Evolução Molecular , Genomas de Plastídeos , Oenothera/genética , Inversão Cromossômica , Mapeamento Cromossômico , Cromossomos de Plantas , DNA Intergênico/química , Genes de Plantas , Variação Genética , Genoma de Planta , Genômica , Oenothera/classificação , Filogenia , Proteínas de Plantas/genética , RNA de Plantas/genética , Sequências Repetitivas de Ácido Nucleico
7.
Genomics ; 88(3): 372-80, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16829020

RESUMO

Coevolution of cellular genetic compartments is a fundamental aspect in eukaryotic genome evolution that becomes apparent in serious developmental disturbances after interspecific organelle exchanges. The genus Oenothera represents a unique, at present the only available, resource to study the role of the compartmentalized plant genome in diversification of populations and speciation processes. An integrated approach involving cDNA cloning, EST sequencing, and bioinformatic data mining was chosen using Oenothera elata with the genetic constitution nuclear genome AA with plastome type I. The Gene Ontology system grouped 1621 unique gene products into 17 different functional categories. Application of arrays generated from a selected fraction of ESTs revealed significantly differing expression profiles among closely related Oenothera species possessing the potential to generate fertile and incompatible plastid/nuclear hybrids (hybrid bleaching). Furthermore, the EST library provides a valuable source of PCR-based polymorphic molecular markers that are instrumental for genotyping and molecular mapping approaches.


Assuntos
Núcleo Celular/genética , Etiquetas de Sequências Expressas , Biblioteca Gênica , Oenothera/genética , Mapeamento Cromossômico/métodos , Marcadores Genéticos/genética , Infertilidade das Plantas/genética , Plastídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...