Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Am J Hematol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136282

RESUMO

Prior studies have suggested that immune thrombotic thrombocytopenic purpura (iTTP) may display seasonal variation; however, methodologic limitations and sample sizes have diminished the ability to perform a rigorous assessment. This 5-year retrospective study assessed the epidemiology of iTTP and determined whether it displays a seasonal pattern. Patients with both initial and relapsed iTTP (defined as a disintegrin and metalloprotease with thrombospondin type motifs 13 activity <10%) from 24 tertiary centers in Australia, Canada, France, Greece, Italy, Spain, and the US were included. Seasons were defined as: Northern Hemisphere-winter (December-February); spring (March-May); summer (June-August); autumn (September-November) and Southern Hemisphere-winter (June-August); spring (September-November); summer (December-February); autumn (March-May). Additional outcomes included the mean temperature in months with and without an iTTP episode at each site. A total of 583 patients experienced 719 iTTP episodes. The observed proportion of iTTP episodes during the winter was significantly greater than expected if equally distributed across seasons (28.5%, 205/719, 25.3%-31.9%; p = .03). Distance from the equator and mean temperature deviation both positively correlated with the proportion of iTTP episodes during winter. Acute iTTP episodes were associated with the winter season and colder temperatures, with a second peak during summer. Occurrence during winter was most pronounced at sites further from the equator and/or with greater annual temperature deviations. Understanding the etiologies underlying seasonal patterns of disease may assist in discovery and development of future preventative therapies and inform models for resource utilization.

2.
Res Pract Thromb Haemost ; 8(3): 102388, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38651093

RESUMO

Background: Mortality due to immune-mediated thrombotic thrombocytopenic purpura (iTTP) remains significant. Predicting mortality risk may potentially help individualize treatment. The French Thrombotic Microangiopathy (TMA) Reference Score has not been externally validated in the United States. Recent advances in machine learning technology can help analyze large numbers of variables with complex interactions for the development of prediction models. Objectives: To validate the French TMA Reference Score in the United States Thrombotic Microangiopathy (USTMA) iTTP database and subsequently develop a novel mortality prediction tool, the USTMA TTP Mortality Index. Methods: We analyzed variables available at the time of initial presentation, including demographics, symptoms, and laboratory findings. We developed our model using gradient boosting machine, a machine learning ensemble method based on classification trees, implemented in the R package gbm. Results: In our cohort (n = 419), the French score predicted mortality with an area under the receiver operating characteristic curve of 0.63 (95% CI: 0.50-0.77), sensitivity of 0.35, and specificity of 0.84. Our gradient boosting machine model selected 8 variables to predict acute mortality with a cross-validated area under the receiver operating characteristic curve of 0.77 (95% CI: 0.71-0.82). The 2 cutoffs corresponded to sensitivities of 0.64 and 0.50 and specificities of 0.76 and 0.87, respectively. Conclusion: The USTMA Mortality Index was acceptable for predicting mortality due to acute iTTP in the USTMA registry, but not sensitive enough to rule out death. Identifying patients at high risk of iTTP-related mortality may help individualize care and ultimately improve iTTP survival outcomes. Further studies are needed to provide external validation. Our model is one of many recent examples where machine learning models may show promise in clinical prediction tools in healthcare.

3.
JCI Insight ; 9(8)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483534

RESUMO

BACKGROUNDCOVID-19 convalescent plasma (CCP) virus-specific antibody levels that translate into recipient posttransfusion antibody levels sufficient to prevent disease progression are not defined.METHODSThis secondary analysis correlated donor and recipient antibody levels to hospitalization risk among unvaccinated, seronegative CCP recipients within the outpatient, double-blind, randomized clinical trial that compared CCP to control plasma. The majority of COVID-19 CCP arm hospitalizations (15/17, 88%) occurred in this unvaccinated, seronegative subgroup. A functional cutoff to delineate recipient high versus low posttransfusion antibody levels was established by 2 methods: (i) analyzing virus neutralization-equivalent anti-Spike receptor-binding domain immunoglobulin G (anti-S-RBD IgG) responses in donors or (ii) receiver operating characteristic (ROC) curve analysis.RESULTSSARS-CoV-2 anti-S-RBD IgG antibody was volume diluted 21.3-fold into posttransfusion seronegative recipients from matched donor units. Virus-specific antibody delivered was approximately 1.2 mg. The high-antibody recipients transfused early (symptom onset within 5 days) had no hospitalizations. A CCP-recipient analysis for antibody thresholds correlated to reduced hospitalizations found a statistical significant association between early transfusion and high antibodies versus all other CCP recipients (or control plasma), with antibody cutoffs established by both methods-donor-based virus neutralization cutoffs in posttransfusion recipients (0/85 [0%] versus 15/276 [5.6%]; P = 0.03) or ROC-based cutoff (0/94 [0%] versus 15/267 [5.4%]; P = 0.01).CONCLUSIONIn unvaccinated, seronegative CCP recipients, early transfusion of plasma units in the upper 30% of study donors' antibody levels reduced outpatient hospitalizations. High antibody level plasma units, given early, should be reserved for therapeutic use.TRIAL REGISTRATIONClinicalTrials.gov NCT04373460.FUNDINGDepartment of Defense (W911QY2090012); Defense Health Agency; Bloomberg Philanthropies; the State of Maryland; NIH (3R01AI152078-01S1, U24TR001609-S3, 1K23HL151826NIH); the Mental Wellness Foundation; the Moriah Fund; Octapharma; the Healthnetwork Foundation; the Shear Family Foundation; the NorthShore Research Institute; and the Rice Foundation.


Assuntos
Anticorpos Antivirais , Soroterapia para COVID-19 , COVID-19 , Hospitalização , Imunização Passiva , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/terapia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Imunização Passiva/métodos , Hospitalização/estatística & dados numéricos , SARS-CoV-2/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Método Duplo-Cego , Idoso , Doadores de Sangue/estatística & dados numéricos , Pacientes Ambulatoriais
5.
Trauma Surg Acute Care Open ; 9(Suppl 1): e001126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38196934

RESUMO

Objectives: Trauma-induced coagulopathy (TIC) occurs in a subset of severely injured trauma patients. Despite having achieved surgical hemostasis, these individuals can have persistent bleeding, clotting, or both in conjunction with deranged coagulation parameters and typically require transfusion support with plasma, platelets, and/or cryoprecipitate. Due to the multifactorial nature of TIC, targeted interventions usually do not have significant clinical benefits. Therapeutic plasma exchange (TPE) is a non-specific modality of removing and replacing a patient's plasma in a euvolemic manner that can temporarily normalize coagulation parameters and remove deleterious substances, and may be beneficial in such patients with TIC. Methods: In a prospective case series, TPE was performed in severely injured trauma patients diagnosed with TIC and transfusion requirement. These individuals all underwent a series of at least 3 TPE procedures performed once daily with plasma as the exclusive replacement fluid. Demographic, injury, laboratory, TPE, and outcome data were collected and analyzed. Results: In total, 7 patients received 23 TPE procedures. All patients had marked improvements in routine coagulation parameters, platelet counts, a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) activities, inflammatory markers including interleukin-6 concentrations, and organ system injuries after completion of their TPE treatments. All-cause mortality rates at 1 day, 7 days, and 30 days were 0%, 0%, and 43%, respectively, and all patients for whom TPE was initiated within 24 hours after injury survived to the 30-day timepoint. Surgical, critical care, and apheresis nursing personnel who were surveyed were universally positive about the utilization of TPE in this patient population. These procedures were tolerated well with the most common adverse event being laboratory-diagnosed hypocalcemia. Conclusion: TPE is feasible and tolerable in severely injured trauma patients with TIC. However, many questions remain regarding the application of TPE for these critically ill patients including identification of the optimal injured population, ideal time of treatment initiation, appropriate treatment intensity, and concurrent use of adjunctive treatments. Level of evidence: Level V.

7.
JAMA ; 330(19): 1892-1902, 20211121.
Artigo em Inglês | BIGG - guias GRADE | ID: biblio-1537660

RESUMO

Red blood cell transfusion is a common medical intervention with benefits and harms. To provide recommendations for use of red blood cell transfusion in adults and children. Standards for trustworthy guidelines were followed, including using Grading of Recommendations Assessment, Development and Evaluation methods, managing conflicts of interest, and making values and preferences explicit. Evidence from systematic reviews of randomized controlled trials was reviewed. For adults, 45 randomized controlled trials with 20 599 participants compared restrictive hemoglobin-based transfusion thresholds, typically 7 to 8 g/dL, with liberal transfusion thresholds of 9 to 10 g/dL. For pediatric patients, 7 randomized controlled trials with 2730 participants compared a variety of restrictive and liberal transfusion thresholds. For most patient populations, results provided moderate quality evidence that restrictive transfusion thresholds did not adversely affect patient-important outcomes. Recommendation 1: for hospitalized adult patients who are hemodynamically stable, the international panel recommends a restrictive transfusion strategy considering transfusion when the hemoglobin concentration is less than 7 g/dL (strong recommendation, moderate certainty evidence). In accordance with the restrictive strategy threshold used in most trials, clinicians may choose a threshold of 7.5 g/dL for patients undergoing cardiac surgery and 8 g/dL for those undergoing orthopedic surgery or those with preexisting cardiovascular disease. Recommendation 2: for hospitalized adult patients with hematologic and oncologic disorders, the panel suggests a restrictive transfusion strategy considering transfusion when the hemoglobin concentration is less than 7 g/dL (conditional recommendations, low certainty evidence). Recommendation 3: for critically ill children and those at risk of critical illness who are hemodynamically stable and without a hemoglobinopathy, cyanotic cardiac condition, or severe hypoxemia, the international panel recommends a restrictive transfusion strategy considering transfusion when the hemoglobin concentration is less than 7 g/dL (strong recommendation, moderate certainty evidence). Recommendation 4: for hemodynamically stable children with congenital heart disease, the international panel suggests a transfusion threshold that is based on the cardiac abnormality and stage of surgical repair: 7 g/dL (biventricular repair), 9 g/dL (single-ventricle palliation), or 7 to 9 g/dL (uncorrected congenital heart disease) (conditional recommendation, low certainty evidence). It is good practice to consider overall clinical context and alternative therapies to transfusion when making transfusion decisions about an individual patient.


Assuntos
Humanos , Adulto , Hemoglobinas/análise , Transfusão de Eritrócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA