Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet J ; 198 Suppl 1: e124-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24360756

RESUMO

The type and condition of sport surfaces affect performance and can also be a risk factor for injury. Combining the use a 3-dimensional dynamometric horseshoe (DHS), an accelerometer and high-speed cameras, variables reflecting hoof-ground interaction and maximal limb loading can be measured. The aim of the present study was to compare the effects of two racing surfaces, turf and all-weather waxed (AWW), on the forelimbs of five horses at the canter. Vertical hoof velocity before impact was higher on AWW. Maximal deceleration at impact (vertical impact shock) was not significantly different between the two surfaces, whereas the corresponding vertical force peak at impact measured by the DHS was higher on turf. Low frequency (0-200 Hz) vibration energy was also higher on turf; however high frequency (>400 Hz) vibration energy tended to be higher on AWW. The maximal longitudinal force during braking and the maximal vertical force at mid-stance were lower on AWW and their times of occurrence were delayed. AWW was also characterised by larger slip distances and sink distances, both during braking and at maximal sink. On a given surface, no systematic association was found between maximal vertical force at mid-stance and either sink distance or vertical impact shock. This study confirms the damping properties of AWW, which appear to be more efficient for low frequency events. Given the biomechanical changes induced by equestrian surfaces, combining dynamic and kinematic approaches is strongly recommended for a reliable assessment of hoof-ground interaction and maximal limb loading.


Assuntos
Membro Anterior/fisiologia , Marcha/fisiologia , Casco e Garras/fisiologia , Cavalos/fisiologia , Atividade Motora/fisiologia , Animais , Fenômenos Biomecânicos , Masculino
2.
J Biomech ; 45(2): 263-8, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22078274

RESUMO

Axial speed of sound (SOS) measurements have been successfully applied to noninvasively evaluate tendon load, while preliminary studies showed that this technique also has a potential clinical interest in the follow up of tendon injuries. The ultrasound propagation theory predicts that the SOS is determined by the effective stiffness, mass density and Poisson's ratio of the propagating medium. Tendon stiffness characterizes the tissue's mechanical quality, but it is often measured in quasi-static condition and for entire tendon segments, so it might not be the same as the effective stiffness which determines the SOS. The objectives of the present study were to investigate the relationship between axial SOS and tendon's nonlinear elasticity, measured in standard laboratory conditions, and to evaluate if tendon's mass density and cross-sectional area (CSA) affect the SOS level. Axial SOS was measured during in vitro cycling of 9 equine superficial digital tendons. Each tendon's stiffness was characterized with a tangent modulus (the continuous derivative of the true stress/true strain curve) and an elastic modulus (the slope of this curve's linear region). Tendon's SOS was found to linearly vary with the square root of the tangent modulus during loading; tendon's SOS level was found correlated to the elastic modulus's square root and inversely correlated to the tendon's CSA, but it was not affected by tendon's mass density. These results confirm that tendon's tangent and elastic moduli, measured in laboratory conditions, are related to axial SOS and they represent one of its primary determinants.


Assuntos
Elasticidade/fisiologia , Som , Tendões/fisiologia , Suporte de Carga/fisiologia , Animais , Cavalos , Traumatismos dos Tendões/fisiopatologia
3.
Ultrasound Med Biol ; 38(1): 162-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22104528

RESUMO

Ultrasonography is an established technique to follow up injured tendons, although the lesions' echogenicity tends to become normal before the tendon is ready to sustain the stresses imposed by exercise. Normalized axial speed of sound (SOS) has been found to correlate with an injured tendon's stiffness; therefore, the purpose of this study was to establish whether SOS would be a useful tool in tendon injury follow-up. Axial SOS was measured in 11 equine superficial digital flexor tendons during a 15-week follow-up period and compared with an ultrasonographic grading system. SOS significantly decreased 2 weeks after the surgical induction of a core lesion, showing a minimum between 7 and 10 weeks; ultrasonographic grade showed a minimum at 3 weeks and increased thereafter. The ultrasonographic grading at 15 weeks was correlated to normalized SOS. These results suggest that axial SOS provides complementary information to ultrasonography that could be of clinical interest.


Assuntos
Traumatismos dos Tendões/diagnóstico por imagem , Tendões/diagnóstico por imagem , Ultrassonografia/métodos , Ultrassonografia/veterinária , Animais , Seguimentos , Cavalos , Prognóstico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
J Biomech ; 45(1): 53-8, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22018583

RESUMO

Equine superficial digital flexor tendons (SDFT) are often injured, and they represent an excellent model for human sport tendinopathies. While lesions can be precisely diagnosed by clinical evaluation and ultrasonography, a prognosis is often difficult to establish; the knowledge of the injured tendon's mechanical properties would help in anticipating the outcome. The objectives of the present study were to compare the axial speed of sound (SOS) measured in vivo in normal and injured tendons and to investigate their relationship with the tendons' mechanical parameters, in order to assess the potential of quantitative axial ultrasound to monitor the healing of the injured tendons. SOS was measured in vivo in the right fore SDFTs of 12 horses during walk, before and 3.5 months after the surgical induction of a bilateral core lesion. The 12 horses were then euthanized, their SDFTs isolated and tested in tension to measure their elastic modulus and maximal load (and corresponding stress). SOS significantly decreased from 2179.4 ± 31.4 m/s in normal tendons to 2065.8 ± 67.1 m/s 3.5 months after the surgical induction, and the tendons' elastic modulus (0.90 ± 0.17 GPa) was found lower than what has been reported in normal tendons. While SOS was not correlated to tendon maximal load and corresponding stress, the SOS normalized on its value in normal tendons was correlated to the tendons' elastic modulus. These preliminary results confirm the potential of axial SOS in helping the functional assessment of injured tendon.


Assuntos
Cavalos/lesões , Traumatismos dos Tendões/veterinária , Tendões/fisiopatologia , Animais , Fenômenos Biomecânicos/fisiologia , Módulo de Elasticidade/fisiologia , Membro Anterior/diagnóstico por imagem , Membro Anterior/lesões , Membro Anterior/fisiopatologia , Estresse Mecânico , Traumatismos dos Tendões/diagnóstico por imagem , Traumatismos dos Tendões/fisiopatologia , Tendões/diagnóstico por imagem , Ultrassonografia , Caminhada/fisiologia , Cicatrização/fisiologia
5.
J Biomech ; 44(4): 719-24, 2011 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-21112587

RESUMO

Excessive axial tension is very likely involved in the aetiology of tendon lesions, and the most appropriate indicator of tendon stress state is the true stress, the ratio of instantaneous load to instantaneous cross-sectional area (CSA). Difficulties to measure tendon CSA during tension often led to approximate true stress by assuming that CSA is constant during loading (i.e. by the engineering stress) or that tendon is incompressible, implying a Poisson's ratio of 0.5, although these hypotheses have never been tested. The objective of this study was to measure tendon CSA variation during quasi-static tensile loading, in order to assess the true stress to which the tendon is subjected and its Poisson's ratio. Eight equine superficial digital flexor tendons (SDFT, about 30cm long) were tested in tension until failure while the CSA of each tendon was measured in its metacarpal part by means of a linear laser scanner. Axial elongation and load were synchronously recorded during the test. CSA was found to linearly decrease with strain, with a mean decrease at failure of -10.7±2.8% (mean±standard deviation). True stress at failure was 7.1-13.6% higher than engineering stress, while stress estimation under the hypothesis of incompressibility differed from true stress of -6.6 to 2.3%. Average Poisson's ratio was 0.55±0.12 and did not significantly vary with load. From these results on equine SDFT it was demonstrated that tendon in axial quasi-static tension can be considered, at first approximation, as an incompressible material.


Assuntos
Modelos Biológicos , Tendões/fisiologia , Suporte de Carga/fisiologia , Animais , Força Compressiva/fisiologia , Simulação por Computador , Cavalos , Estresse Mecânico , Resistência à Tração/fisiologia
6.
J Biomech Eng ; 132(10): 105001, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20887025

RESUMO

Measure of the cross-sectional area (CSA) of biological specimens is a primary concern for many biomechanical tests. Different procedures are presented in literature but besides the fact that noncontact techniques are required during mechanical testing, most of these procedures lack accuracy or speed. Moreover, they often require a precise positioning of the specimen, which is not always feasible, and do not enable the measure of the same section during tension. The objective of this study was to design a noncontact, fast, and accurate device capable of acquiring CSA of specimens mounted on a testing machine. A system based on the horizontal linear displacement of two charge-coupled device reflectance laser devices next to the specimen, one for each side, was chosen. The whole measuring block is mounted on a vertical linear guide to allow following the measured zone during sample tension (or compression). The device was validated by measuring the CSA of metallic rods machined with geometrical shapes (circular, hexagonal, semicircular, and triangular) as well as an equine superficial digital flexor tendon (SDFT) in static condition. We also performed measurements during mechanical testing of three SDFTs, obtaining the CSA variations until tendon rupture. The system was revealed to be very fast with acquisition times in the order of 0.1 s and interacquisition time of about 1.5 s. Measurements of the geometrical shapes yielded mean errors lower than 1.4% (n=20 for each shape) while the tendon CSA at rest was 90.29 ± 1.69 mm(2) (n=20). As for the tendons that underwent tension, a mean of 60 measures were performed for each test, which lasted about 2 min until rupture (at 20 mm/min), finding CSA variations linear with stress (R(2)>0.85). The proposed device was revealed to be accurate and repeatable. It is easy to assemble and operate and capable of moving to follow a defined zone on the specimen during testing. The system does not need precise centering of the sample and can perform noncontact measures during mechanical testing; therefore, it can be used to measure variations of the specimen CSA during a tension (or compression) test in order to determine, for instance, the true stress and transverse deformations.


Assuntos
Engenharia Biomédica/instrumentação , Animais , Fenômenos Biomecânicos , Engenharia Biomédica/métodos , Cavalos , Técnicas In Vitro , Lasers , Estresse Mecânico , Tendões/anatomia & histologia , Tendões/fisiologia
7.
J Biomech ; 42(13): 2210-3, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19647261

RESUMO

A non-invasive ultrasonic (US) technique of tendon force measurement has been recently developed. It is based on the relationship demonstrated between the speed of sound (SOS) in a tendon and the traction force applied to it. The objectives of the present study were to evaluate the variability of this non-linear relationship among 7 equine superficial digital flexor (SDF) tendons, and the reproducibility of SOS measurements in these tendons over successive loading cycles and tests. Seven SDF tendons were equipped with an US probe (1MHz), secured in contact with the skin overlying the tendon metacarpal part. The tendons were submitted to a traction test consisting in 5 cycles of loading/unloading between 50 and 4050N. Four tendons out of the 7 were submitted to 5 additional cycles up to 5550N. The SOS-tendon force relationships appeared similar in shape, although large differences in SOS levels were observed among the tendons. Reproducibility between cycles was evaluated from the root mean square of the standard deviations (RMS-SD) of SOS values observed every 100N, and of force values every 2m/s. Reproducibility of SOS measurements revealed high between successive cycles: above 500N the RMS-SD was less than 2% of the corresponding traction force. Reproducibility between tests was lower, partly due to the experimental set-up; above 500N the difference between the two tests stayed nevertheless below 15% of the corresponding mean traction force. The reproducibility of the US technique here demonstrated in vitro has now to be confirmed in vivo.


Assuntos
Envelhecimento/fisiologia , Técnicas de Imagem por Elasticidade/métodos , Interpretação de Imagem Assistida por Computador/métodos , Tendões/diagnóstico por imagem , Tendões/fisiologia , Animais , Módulo de Elasticidade/fisiologia , Cavalos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estresse Mecânico , Resistência à Tração/fisiologia , Suporte de Carga/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...