Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 59(19): 9035-9046, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27603506

RESUMO

Side effects and acquired resistance by cancer cells limit the use of platinum anticancer drugs. Modification of oxaliplatin (OXA) into a lipophilic Pt(IV) complex [Pt(DACH)(OAc)(OPal)(ox)] (1), containing both lipophilic and hydrophilic axial ligands, was applied to improve performance and facilitate incorporation into polymeric nanoparticles. Complex 1 exhibited unique potency against a panel of cancer cells, including cisplatin-resistant tumor cells. [Pt(DACH)(OAc)(OPal)(ox)] incorporated nanoparticles (2) presented a mean diameter of 146 nm with encapsulation yields above 95% as determined by HPLC. Complexes 1 and 2 showed enhanced in vitro cellular Pt accumulation, DNA platination, and antiproliferative effect compared to OXA. Results of an orthotopic intraperitoneal model of metastatic ovarian cancer (SKOV-3) and a xenograft subcutaneous model of colon (HCT-116) tumor in SCID-bg mice showed that the activity of 1 and 2 significantly decreased tumor growth rates compared to control and OXA treatment groups. Consequently, these findings warrant further development toward clinical translation.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Descoberta de Drogas , Feminino , Células HCT116 , Humanos , Ligantes , Masculino , Camundongos SCID , Neoplasias/tratamento farmacológico , Compostos Organoplatínicos/farmacocinética , Compostos Organoplatínicos/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Oxaliplatina
2.
J Inorg Biochem ; 156: 89-97, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26780576

RESUMO

The molecular and cellular mechanisms of enhanced toxic effects in tumor cells of the Pt(IV) derivatives of antitumor oxaliplatin containing axial dichloroacetate (DCA) ligands were investigated. DCA ligands were chosen because DCA has shown great potential as an apoptosis sensitizer and anticancer agent reverting the Wartburg effect. In addition, DCA reverses mitochondrial changes in a wide range of cancers, promoting tumor cell apoptosis in a mitochondrial-dependent pathway. We demonstrate that (i) the transformation of oxaliplatin to its Pt(IV) derivatives containing axial DCA ligands markedly enhances toxicity in cancer cells and helps overcome inherent and acquired resistance to cisplatin and oxaliplatin; (ii) a significant fraction of the intact molecules of DCA conjugates with Pt(IV) derivative of oxaliplatin accumulates in cancer cells where it releases free DCA; (iii) mechanism of biological action of the Pt(IV) derivatives of oxaliplatin containing DCA ligands is connected with the effects of DCA released in cancer cells from the Pt(IV) prodrugs on mitochondria and metabolism of glucose; (iv) treatments with the Pt(IV) derivatives of oxaliplatin containing DCA ligands activate an autophagic response in human colorectal cancer cells; (v) the toxic effects in cancer cells of the Pt(IV) derivatives of oxaliplatin containing DCA ligands can be potentiated if cells are treated with these prodrugs in combination with 5-fluorouracil. These properties of the Pt(IV) derivatives of oxaliplatin containing DCA ligands provide opportunities for further development of new platinum-based agents with the capability of killing cancer cells resistant to conventional antitumor platinum drugs used in the clinic.


Assuntos
Acetatos/farmacologia , Mitocôndrias/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Oxaliplatina
3.
Chem Sci ; 7(3): 2381-2391, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29997781

RESUMO

Our study demonstrates that Pt(iv) derivative of cisplatin, with two axial PhB ligands, ctc-[Pt(NH3)2(PhB)2Cl2], is a very potent cytotoxic agent against many different human cancer cell lines and is up to 100 fold more potent than cisplatin, and significantly more potent than the Pt(iv) derivatives of cisplatin with either two hydroxido, two acetato or two valproato ligands. The high potency of this compound (and some others) is due to several factors including enhanced internalization, probably driven by "synergistic accumulation" of both the Pt moiety and the phenylbutyrate, that correlates with enhanced DNA binding and cytotoxicity. ctc-[Pt(NH3)2(PhB)2Cl2] inhibits 60-70% HDAC activity in cancer cells, at levels below the IC50 values of PhB, suggesting synergism between Pt and PhB. Mechanistically, ctc-[Pt(NH3)2(PhB)2Cl2] induces activation of caspases (3 and 9) triggering apoptotic signaling via the mitochondrial pathway. Data also suggest that the antiproliferative effect of ctc-[Pt(NH3)2(PhB)2Cl2] may not depend of p53. Pt(iv) derivatives of cisplatin with either two axial PhB or valproate ligands are more potent than their oxaliplatin analogs. ctc-[Pt(NH3)2(PhB)2Cl2] is significantly more potent than its valproate analog ctc-[Pt(NH3)2(VPA)2Cl2]. These compounds combine multiple effects such as efficient uptake of both Pt and PhB with DNA binding, HDAC inhibition and activation of caspases to effectively kill cancer cells.

4.
Biochem Pharmacol ; 95(3): 133-44, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25888926

RESUMO

Substitutionally inert Pt(IV) prodrugs, combining bioactive axial ligands with Pt(IV) derivatives of antitumor Pt(II) compounds, represent a new generation of anticancer drugs. The rationale behind these prodrugs is to release, by reductive elimination inside the cancer cell, an active Pt(II) drug which binds nuclear DNA as well as bioactive ligands that may potentiate toxic effects of the Pt(II) drugs by an independent pathway. Platinum prodrugs, such as Pt(IV) derivatives of cisplatin containing axial valproic acid (VPA) ligands, destroy cancer cells with greater efficacy than conventional cisplatin. These axial ligands were chosen because VPA inhibits histone deacetylase (HDAC) activity, thereby decondensing chromatin and subsequently increasing the accessibility of DNA within chromatin to DNA-binding agents. We examined the mechanism of cytotoxic activity of Pt(IV) derivatives of cisplatin with VPA axial ligands. Particular attention was paid to the role of the VPA ligand in these Pt(IV) prodrugs in the mechanism underlying their toxic effects in human ovarian tumor cells. We demonstrate that (i) treatment of the cells with these prodrugs resulted in enhanced histone H3 acetylation and decondensation of heterochromatin markedly more effectively than free VPA; (ii) of the total Pt inside the cells, a considerably higher fraction of Pt from the Pt(IV)-VPA conjugates is bound to DNA than from the conjugates with biologically inactive ligands. The results indicate that the enhanced cytotoxicity of the Pt(IV)-VPA conjugates is a consequence of several processes involving enhanced cellular accumulation, downregulation of HDACs and yet other biochemical processes (not involving HDACs) which may potentiate antitumor effects.


Assuntos
Epigênese Genética , Compostos Organoplatínicos/metabolismo , Neoplasias Ovarianas/metabolismo , Ácido Valproico/metabolismo , Acetilação , Linhagem Celular Tumoral , Feminino , Glutationa/metabolismo , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Compostos Organoplatínicos/química , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ácido Valproico/química
5.
Chemistry ; 21(7): 3108-14, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25529335

RESUMO

The design of Pt(IV) pro-drugs as anticancer agents is predicated on the assumption that they will not undergo substitution reactions before entering the cancer cell. Attempts to improve the cytotoxic properties of Pt(IV) pro-drugs included the use of haloacetato axial ligands. Herein, we demonstrate that Pt(IV) complexes with trifluoroacetato (TFA) or dichloroacetato (DCA) ligands can be unstable under biologically relevant conditions and readily undergo hydrolysis, which results in the loss of the axial TFA or DCA ligands. The half-lives for Pt(IV) complexes with two TFA or DCA ligands at pH 7 and 37 °C range from 6 to 800 min, which is short relative to the duration of cytotoxicity experiments that last 24-96 h. However, complexes with two monochloroacetato (MCA) or acetato axial ligands are stable under biologically relevant conditions. The loss of the axial ligands depends primarily on the electron-withdrawing strength of the axial ligands, but also upon the nature of the equatorial ligands. We were unable to find obvious correlations between the structures of the Pt(IV) complexes and the rates of decay of the parent compounds. The X-ray crystal structures of the bis-DCA and bis-MCA Pt(IV) derivatives of oxaliplatin did not reveal any significant structural differences that could explain the observed differences in stability.


Assuntos
Platina/química , Pró-Fármacos/química , Humanos , Hidrólise , Ligantes , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Estereoisomerismo
6.
J Inorg Biochem ; 140: 72-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25063910

RESUMO

We report new anticancer prodrugs, platinum(IV) derivatives of oxaliplatin conjugated with valproic acid (VPA), a well-known drug having histone deacetylase inhibitory activity. Like most platinum(IV) derivatives, the cytotoxicity of the conjugates was lower in cell culture than that of oxaliplatin, but greater than those of its Pt(IV) derivative containing biologically inactive axial ligands in several cancer cell lines. Notably, these conjugates display activity in both cisplatin sensitive- and resistant tumor cells capable of both markedly enhanced accumulation in tumor cells and acting in a dual threat manner, concurrently targeting histone deacetylase and genomic DNA. These results demonstrate the dual targeting strategy to be a valuable route to pursue in the design of platinum agents which may be more effective in cancer types that are typically resistant to therapy by conventional cisplatin. Moreover, platinum(IV) derivatives containing VPA axial ligands seem to be promising dual-targeting candidates for additional preclinical studies.


Assuntos
Antineoplásicos/química , Compostos Organoplatínicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Compostos Organoplatínicos/farmacologia , Oxaliplatina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...