Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Brain ; 16(1): 83, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124148

RESUMO

Unraveling the intricate relationship between mechanical factors and brain activity is a pivotal endeavor, yet the underlying mechanistic model of signaling pathways in brain mechanotransduction remains enigmatic. To bridge this gap, we introduced an in situ multi-scale platform, through which we delineate comprehensive brain biomechanical traits in white matter (WM), grey-white matter junctions (GW junction), and the pons across human brain tissue from four distinct donors. We investigate the three-dimensional expression patterns of Piezo1, Piezo2, and TMEM150C, while also examining their associated histological features and mechanotransduction signaling networks, particularly focusing on the YAP/ß-catenin axis. Our results showed that the biomechanical characteristics (including stiffness, spring term, and equilibrium stress) associated with Piezo1 vary depending on the specific region. Moving beyond Piezo1, our result demonstrated the significant positive correlations between Piezo2 expression and stiffness in the WM. Meanwhile, the expression of Piezo2 and TMEM150C was shown to be correlated to viscoelastic properties in the pons and WM. Given the heterogeneity of brain tissue, we investigated the three-dimensional expression of Piezo1, Piezo2, and TMEM150C. Our results suggested that three mechanosensitive proteins remained consistent across different vertical planes within the tissue sections. Our findings not only establish Piezo1, Piezo2, and TMEM150C as pivotal mechanosensors that regulate the region-specific mechanotransduction activities but also unveil the paradigm connecting brain mechanical properties and mechanotransduction activities and the variations between individuals.


Assuntos
Canais Iônicos , Mecanotransdução Celular , Humanos , Encéfalo/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia
2.
J Microsc ; 287(1): 19-31, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35415878

RESUMO

The visualisation and quantification of pore networks and main phases have been critical research topics in cementitious materials as many critical mechanical and chemical properties and infrastructure reliability rely on these 3D characteristics. In this study, we realised the mesoscale serial sectioning and analysis up to ∼80 µm by ∼90 µm by ∼60 µm on portland cement mortar using plasma focused ion beam (PFIB) for the first time. The workflow of working with mortar and PFIB was established applying a prepositioned hard silicon mask to reduce curtaining. Segmentation with minimal human interference was performed using a trained neural network, in which multiple types of segmentation models were compared. Combining PFIB analysis at microscale with X-ray micro-computed tomography, the analysis of capillary pores and air voids ranging from hundreds of nanometres (nm) to millimetres (mm) can be conducted. The volume fraction of large capillary pores and air voids are 11.5% and 12.7%, respectively. Moreover, the skeletonisation of connected capillary pores clearly shows fluid transport pathways, which is a key factor determining durability performance of concrete in aggressive environments. Another interesting aspect of the FIB tomography is the reconstruction of anhydrous phases, which could enable direct study of hydration kinetics of individual cement phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA