Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 627(8005): 789-796, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38538940

RESUMO

The Antarctic Circumpolar Current (ACC) represents the world's largest ocean-current system and affects global ocean circulation, climate and Antarctic ice-sheet stability1-3. Today, ACC dynamics are controlled by atmospheric forcing, oceanic density gradients and eddy activity4. Whereas palaeoceanographic reconstructions exhibit regional heterogeneity in ACC position and strength over Pleistocene glacial-interglacial cycles5-8, the long-term evolution of the ACC is poorly known. Here we document changes in ACC strength from sediment cores in the Pacific Southern Ocean. We find no linear long-term trend in ACC flow since 5.3 million years ago (Ma), in contrast to global cooling9 and increasing global ice volume10. Instead, we observe a reversal on a million-year timescale, from increasing ACC strength during Pliocene global cooling to a subsequent decrease with further Early Pleistocene cooling. This shift in the ACC regime coincided with a Southern Ocean reconfiguration that altered the sensitivity of the ACC to atmospheric and oceanic forcings11-13. We find ACC strength changes to be closely linked to 400,000-year eccentricity cycles, probably originating from modulation of precessional changes in the South Pacific jet stream linked to tropical Pacific temperature variability14. A persistent link between weaker ACC flow, equatorward-shifted opal deposition and reduced atmospheric CO2 during glacial periods first emerged during the Mid-Pleistocene Transition (MPT). The strongest ACC flow occurred during warmer-than-present intervals of the Plio-Pleistocene, providing evidence of potentially increasing ACC flow with future climate warming.

2.
Nat Commun ; 14(1): 2002, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037802

RESUMO

The sensitivity of the Australian Monsoon to changing climate boundary conditions remains controversial due to limited understanding of forcing processes and past variability. Here, we reconstruct austral summer monsoonal discharge and wind-driven winter productivity across the Middle Pleistocene Transition (MPT) in a sediment sequence drilled off NW Australia. We show that monsoonal precipitation and runoff primarily responded to precessional insolation forcing until ~0.95 Ma, but exhibited heightened sensitivity to ice volume and pCO2 related feedbacks following intensification of glacial-interglacial cycles. Our records further suggest that summer monsoon variability at the precessional band was closely tied to the thermal evolution of the Indo-Pacific Warm Pool and strength of the Walker circulation over the past ~1.6 Myr. By contrast, productivity proxy records consistently tracked glacial-interglacial variability, reflecting changing rhythms in polar ice fluctuations and Hadley circulation strength. We conclude that the Australian Monsoon underwent a major re-organization across the MPT and that extratropical feedbacks were instrumental in driving short- and long-term variability.

3.
Sci Adv ; 7(23)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34078607

RESUMO

Several North Pacific studies of the last deglaciation show hypoxia throughout the ocean margins and attribute this phenomenon to the effects of abrupt warming and meltwater inputs. Yet, because of the lack of long records spanning multiple glacial cycles and deglaciation events, it is unclear whether deoxygenation was a regular occurrence of warming events and whether deglaciation and/or other conditions promoted hypoxia throughout time. Here, subarctic Pacific laminated sediments from the past 1.2 million years demonstrate that hypoxic events recurred throughout the Pleistocene as episodes of highly productive phytoplankton growth and were generally associated with interglacial climates, high sea levels, and enhanced nitrate utilization-but not with deglaciations. We suggest that hypoxia was typically stimulated by high productivity from iron fertilization facilitated by redox-remobilized iron from flooded continental shelves.

4.
Sci Rep ; 11(1): 463, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33432102

RESUMO

Precisely targeted measurements of trace elements using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) reveal inter-chamber heterogeneities in specimens of the planktic foraminifer Trilobatus (Globigerinoides) sacculifer. We find that Mg/Ca ratios in the final growth chamber are generally lower compared to previous growth chambers, but final chamber Mg/Ca is elevated in one of thirteen sample intervals. Differences in distributions of Mg/Ca values from separate growth chambers are observed, occurring most often at lower Mg/Ca values, suggesting that single-chamber measurements may not be reflective of the specimen's integrated Mg/Ca. We compared LA-ICPMS Mg/Ca values to paired, same-individual Mg/Ca measured via inductively coupled plasma optical emission spectrometry (ICP-OES) to assess their correspondence. Paired LA-ICPMS and ICP-OES Mg/Ca show a maximum correlation coefficient of R = 0.92 (p < 0.05) achieved by applying a weighted average of the last and penultimate growth chambers. Population distributions of paired Mg/Ca values are identical under this weighting. These findings demonstrate that multi-chamber LA-ICPMS measurements can approximate entire specimen Mg/Ca, and is thus representative of the integrated conditions experienced during the specimen's lifespan. This correspondence between LA-ICPMS and ICP-OES data links these methods and demonstrates that both generate Mg/Ca values suitable for individual foraminifera palaeoceanographic reconstructions.


Assuntos
Exoesqueleto/crescimento & desenvolvimento , Exoesqueleto/metabolismo , Cálcio/metabolismo , Foraminíferos/crescimento & desenvolvimento , Foraminíferos/metabolismo , Magnésio/metabolismo , Oligoelementos/metabolismo , Animais , Longevidade/fisiologia , Espectrometria de Massas/métodos
5.
Nat Commun ; 11(1): 5377, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097727

RESUMO

The El Niño Southern Oscillation (ENSO) is highly dependent on coupled atmosphere-ocean interactions and feedbacks, suggesting a tight relationship between ENSO strength and background climate conditions. However, the extent to which background climate state determines ENSO behavior remains in question. Here we present reconstructions of total variability and El Niño amplitude from individual foraminifera distributions at discrete time intervals over the past ~285,000 years across varying atmospheric CO2 levels, global ice volume and sea level, and orbital insolation forcing. Our results show a strong correlation between eastern tropical Pacific Ocean mixed-layer thickness and both El Niño amplitude and central Pacific variability. This ENSO-thermocline relationship implicates upwelling feedbacks as the major factor controlling ENSO strength on millennial time scales. The primacy of the upwelling feedback in shaping ENSO behavior across many different background states suggests accurate quantification and modeling of this feedback is essential for predicting ENSO's behavior under future climate conditions.

6.
iScience ; 23(9): 101459, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32861995

RESUMO

We explore archaeal distributions in sedimentary subseafloor habitats of Guaymas Basin and the adjacent Sonora Margin, located in the Gulf of California, México. Sampling locations include (1) control sediments without hydrothermal or seep influence, (2) Sonora Margin sediments underlying oxygen minimum zone water, (3) compacted, highly reduced sediments from a pressure ridge with numerous seeps at the base of the Sonora Margin, and (4) sediments impacted by hydrothermal circulation at the off-axis Ringvent site. Generally, archaeal communities largely comprise Bathyarchaeal lineages, members of the Hadesarchaea, MBG-D, TMEG, and ANME-1 groups. Variations in archaeal community composition reflect locally specific environmental challenges. Background sediments are divided into surface and subsurface niches. Overall, the environmental setting and history of a particular site, not isolated biogeochemical properties out of context, control the subseafloor archaeal communities in Guaymas Basin and Sonora Margin sediments.

7.
Sci Rep ; 9(1): 13847, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554864

RESUMO

The Guaymas Basin spreading center, at 2000 m depth in the Gulf of California, is overlain by a thick sedimentary cover. Across the basin, localized temperature anomalies, with active methane venting and seep fauna exist in response to magma emplacement into sediments. These sites evolve over thousands of years as magma freezes into doleritic sills and the system cools. Although several cool sites resembling cold seeps have been characterized, the hydrothermally active stage of an off-axis site was lacking good examples. Here, we present a multidisciplinary characterization of Ringvent, an ~1 km wide circular mound where hydrothermal activity persists ~28 km northwest of the spreading center. Ringvent provides a new type of intermediate-stage hydrothermal system where off-axis hydrothermal activity has attenuated since its formation, but remains evident in thermal anomalies, hydrothermal biota coexisting with seep fauna, and porewater biogeochemical signatures indicative of hydrothermal circulation. Due to their broad potential distribution, small size and limited life span, such sites are hard to find and characterize, but they provide critical missing links to understand the complex evolution of hydrothermal systems.

8.
Nat Commun ; 9(1): 5386, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30568245

RESUMO

The Mid-Pleistocene Transition (MPT) is characterised by cooling and lengthening glacial cycles from 600-1200 ka, thought to be driven by reductions in glacial CO2 in particular from ~900 ka onwards. Reduced high latitude upwelling, a process that retains CO2 within the deep ocean over glacials, could have aided drawdown but has so far not been constrained in either hemisphere over the MPT. Here, we find that reduced nutrient upwelling in the Bering Sea, and North Pacific Intermediate Water expansion, coincided with the MPT and became more persistent at ~900 ka. We propose reduced upwelling was controlled by expanding sea ice and North Pacific Intermediate Water formation, which may have been enhanced by closure of the Bering Strait. The regional extent of North Pacific Intermediate Water across the subarctic northwest Pacific would have contributed to lower atmospheric CO2 and global cooling during the MPT.

9.
Proc Natl Acad Sci U S A ; 114(33): E6759-E6766, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760968

RESUMO

The continental shelves are the most biologically dynamic regions of the ocean, and they are extensive worldwide, especially in the western North Pacific. Their area has varied dramatically over the glacial/interglacial cycles of the last million years, but the effects of this variation on ocean biological and chemical processes remain poorly understood. Conversion of nitrate to N2 by denitrification in sediments accounts for half or more of the removal of biologically available nitrogen ("fixed N") from the ocean. The emergence of continental shelves during ice ages and their flooding during interglacials have been hypothesized to drive changes in sedimentary denitrification. Denitrification leads to the occurrence of phosphorus-bearing, N-depleted surface waters, which encourages N2 fixation, the dominant N input to the ocean. An 860,000-y record of foraminifera shell-bound N isotopes from the South China Sea indicates that N2 fixation covaried with sea level. The N2 fixation changes are best explained as a response to changes in regional excess phosphorus supply due to sea level-driven variations in shallow sediment denitrification associated with the cyclic drowning and emergence of the continental shelves. This hypothesis is consistent with a glacial ocean that hosted globally lower rates of fixed N input and loss and a longer residence time for oceanic fixed N-a "sluggish" ocean N budget during ice ages. In addition, this work provides a clear sign of sea level-driven glacial/interglacial oscillations in biogeochemical fluxes at and near the ocean margins, with implications for coastal organisms and ecosystems.

10.
Science ; 346(6216): 1467, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25525238

RESUMO

Zhang et al. (Reports, 4 April 2014, p. 84) interpret TEX86 and U(37)(K') paleotemperature data as providing a fundamentally new view of tropical Pacific climate during the warm Pliocene period. We argue that, within error, their Pliocene data actually support previously published data indicating average western warm-pool temperature similar to today and a reduced zonal gradient, referred to as a permanent El Niño-like state.

11.
Science ; 309(5735): 758-61, 2005 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-15976271

RESUMO

During the warm early Pliocene (approximately 4.5 to 3.0 million years ago), the most recent interval with a climate warmer than today, the eastern Pacific thermocline was deep and the average west-to-east sea surface temperature difference across the equatorial Pacific was only 1.5 +/- 0.9 degrees C, much like it is during a modern El Niño event. Thus, the modern strong sea surface temperature gradient across the equatorial Pacific is not a stable and permanent feature. Sustained El Niño-like conditions, including relatively weak zonal atmospheric (Walker) circulation, could be a consequence of, and play an important role in determining, global warmth.

12.
Nature ; 429(6989): 263-7, 2004 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-15152244

RESUMO

The Earth's climate has undergone a global transition over the past four million years, from warm conditions with global surface temperatures about 3 degrees C warmer than today, smaller ice sheets and higher sea levels to the current cooler conditions. Tectonic changes and their influence on ocean heat transport have been suggested as forcing factors for that transition, including the onset of significant Northern Hemisphere glaciation approximately 2.75 million years ago, but the ultimate causes for the climatic changes are still under debate. Here we compare climate records from high latitudes, subtropical regions and the tropics, indicating that the onset of large glacial/interglacial cycles did not coincide with a specific climate reorganization event at lower latitudes. The regional differences in the timing of cooling imply that global cooling was a gradual process, rather than the response to a single threshold or episodic event as previously suggested. We also find that high-latitude climate sensitivity to variations in solar heating increased gradually, culminating after cool tropical and subtropical upwelling conditions were established two million years ago. Our results suggest that mean low-latitude climate conditions can significantly influence global climate feedbacks.


Assuntos
Clima , Temperatura Baixa , Clima Tropical , Animais , Carbonato de Cálcio/análise , Sedimentos Geológicos/química , Temperatura Alta , Gelo , Isótopos de Oxigênio , Oceano Pacífico , Água do Mar/análise , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...