Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(7)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35889102

RESUMO

The use of probiotics such as Lactobacillus and Bifidobacterium spp. as a therapeutic against inflammatory bowel disease (IBD) is of significant interest. Lactobacillus salivarus strain UCC118TM is a commensal that has been shown to possess probiotic properties in vitro and anti-infective properties in vivo. However, the usefulness of UCC118 TM as a therapeutic against colitis remains unclear. This study investigates the probiotic potential of Lactobacillus salivarius, UCC118™ in a mouse model of colitis. DSS-induced colitis was coupled with pre-treatment or post-treatment with UCC118TM by daily oral gavage. In the pre-treatment model of colitis, UCC118TM reduced the severity of the disease in the early stages. Improvement in disease severity was coupled with an upregulation of tissue IL-10 levels and increased expression of macrophage M2 markers. This anti-inflammatory activity of UCC118TM was further confirmed in vitro, using a model of LPS-treated bone marrow-derived macrophages. Taken together, these results suggest that UCC118TM may promote the resolution of inflammation. This was supported in a mouse model of established DSS-induced colitis whereby UCC118TM treatment accelerated recovery, as evidenced by weight, stool, histological markers and the recovery of microbiome-associated dysbiosis with an increased abundance of beneficial commensal species. These results demonstrate the potential of Lactobacillus salivarius UCC118TM as a probiotic-based therapeutic strategy to promote health through the upregulation of anti-inflammatory IL-10 and protect against dysbiosis during IBD.

2.
J Exp Med ; 219(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35103755

RESUMO

Obesity is one of the leading preventable causes of cancer; however, little is known about the effects of obesity on anti-tumor immunity. Here, we investigated the effects of obesity on CD8 T cells in mouse models and patients with endometrial cancer. Our findings revealed that CD8 T cell infiltration is suppressed in obesity, which was associated with a decrease in chemokine production. Tumor-resident CD8 T cells were also functionally suppressed in obese mice, which was associated with a suppression of amino acid metabolism. Similarly, we found that a high BMI negatively correlated with CD8 infiltration in human endometrial cancer and that weight loss was associated with a complete pathological response in six of nine patients. Moreover, immunotherapy using anti-PD-1 led to tumor rejection in lean and obese mice and partially restored CD8 metabolism and anti-tumor immunity. These findings highlight the suppressive effects of obesity on CD8 T cell anti-tumor immunity, which can partially be reversed by weight loss and/or immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/etiologia , Neoplasias/metabolismo , Obesidade/metabolismo , Microambiente Tumoral/imunologia , Aminoácidos/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Imunoterapia , Contagem de Linfócitos , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Camundongos Obesos , Neoplasias/patologia , Neoplasias/terapia , Obesidade/etiologia
4.
Nat Immunol ; 22(2): 179-192, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33462452

RESUMO

Metabolic programming controls immune cell lineages and functions, but little is known about γδ T cell metabolism. Here, we found that γδ T cell subsets making either interferon-γ (IFN-γ) or interleukin (IL)-17 have intrinsically distinct metabolic requirements. Whereas IFN-γ+ γδ T cells were almost exclusively dependent on glycolysis, IL-17+ γδ T cells strongly engaged oxidative metabolism, with increased mitochondrial mass and activity. These distinct metabolic signatures were surprisingly imprinted early during thymic development and were stably maintained in the periphery and within tumors. Moreover, pro-tumoral IL-17+ γδ T cells selectively showed high lipid uptake and intracellular lipid storage and were expanded in obesity and in tumors of obese mice. Conversely, glucose supplementation enhanced the antitumor functions of IFN-γ+ γδ T cells and reduced tumor growth upon adoptive transfer. These findings have important implications for the differentiation of effector γδ T cells and their manipulation in cancer immunotherapy.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias do Colo/metabolismo , Metabolismo Energético , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/metabolismo , Timo/metabolismo , Microambiente Tumoral , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Linhagem da Célula , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Neoplasias do Colo/terapia , Feminino , Glucose/metabolismo , Glicólise , Humanos , Imunoterapia Adotiva , Interferon gama/metabolismo , Interleucina-17/metabolismo , Metabolismo dos Lipídeos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/transplante , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Obesidade/imunologia , Obesidade/metabolismo , Técnicas de Cultura de Órgãos , Fenótipo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/transplante , Timo/imunologia , Carga Tumoral
5.
Clin Transl Immunology ; 8(10): e01080, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31624593

RESUMO

γδ T cells are a small population of mostly tissue-resident lymphocytes, with both innate and adaptive properties. These unique features make them particularly attractive candidates for the development of new cellular therapy targeted against tumor development. Nevertheless, γδ T cells may play dual roles in cancer, promoting cancer development on the one hand, while participating in antitumor immunity on the other hand. In mice, γδ T-cell subsets preferentially produce IL-17 or IFN-γ. While antitumor functions of murine γδ T cells can be attributed to IFN-γ+ γδ T cells, recent studies have implicated IL-17+ γδ T cells in tumor growth and metastasis. However, in humans, IL-17-producing γδ T cells are rare and most studies have attributed a protective role to γδ T cells against cancer. In this review, we will present the current knowledge and most recent findings on γδ T-cell functions in mouse models of tumor development and human cancers. We will also discuss their potential as cellular immunotherapy against cancer.

6.
Front Immunol ; 10: 1109, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178861

RESUMO

Recent studies have suggested that the innate immune system can display characteristics of immunological memory and this has been called "innate immune memory" or "trained immunity." Certain fungal products have been shown to induce epigenetic imprinting on monocytes/macrophages that results in heightened inflammatory responses to subsequent stimuli. Here we report that innate immune cells can be trained to be more anti-inflammatory following exposure to products of a helminth pathogen. Macrophages trained in vitro with Fasciola hepatica total extract (FHTE) had enhanced IL-10 and IL-1RA, but reduced TNF production upon re-stimulation with FHTE or TLR ligands and this was reversed by inhibitors of DNA methylation. In contrast, macrophages trained with ß-glucan or Bacillus Calmette-Guérin had enhanced TNF production upon re-stimulation with Pam3cys or LPS. Furthermore, FHTE-trained macrophages had enhanced expression of markers of alternative activated macrophages (AAM). Macrophages from mice treated with FHTE expressed markers of AAM and had heightened IL-10 and IL-1RA production in response to FHTE or TLR ligands and had suppressed TNF and IL-12p40 production. Macrophages from mice treated with FHTE had reduced APC function and inhibited IL-17 production and the encephalitogenic activity of T cells in the experimental autoimmune encephalomyelitis (EAE) model. In addition, mice pre-treated with FHTE were resistant to induction of EAE and this was associated with a significant reduction in IL-17-producing γδ and CD4 T cells infiltrating the CNS. Our findings reveal that cells of the innate immune system can be trained in vitro or in vivo to be more anti-inflammatory by exposure to helminth products and this protects mice against the induction of a T cell-mediated autoimmune disease.


Assuntos
Imunidade Adaptativa , Antígenos de Helmintos/imunologia , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Autoimunidade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Doenças Autoimunes/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Histonas/metabolismo , Imunidade Inata , Memória Imunológica , Lipopolissacarídeos/imunologia , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo
8.
Eur J Immunol ; 49(8): 1291-1294, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31016721

RESUMO

Infection with helminths can protect against the development of autoimmune diseases and this has been associated with induction of anti-inflammatory innate immune responses and Tregs. Here, we demonstrate that helminth-derived products can directly target T cells, especially IL-17-secreting γδ T cells that play a key pathogenic role in CNS autoimmune disease.


Assuntos
Encefalomielite Autoimune Experimental/terapia , Fasciola hepatica/imunologia , Fasciolíase/imunologia , Esclerose Múltipla/terapia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Terapia com Helmintos/métodos , Animais , Antígenos de Helmintos/imunologia , Extratos Celulares/imunologia , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Terapia de Imunossupressão , Camundongos , Glicoproteína Mielina-Oligodendrócito/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
9.
EMBO Rep ; 20(5)2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30894405

RESUMO

Regulatory T (Treg) cells help to maintain tolerance and prevent the development of autoimmune diseases. Retinoic acid (RA) can promote peripheral conversion of naïve T cells into Foxp3+ Treg cells. Here, we show that RA can act as an adjuvant to induce antigen-specific type 1 Treg (Tr1) cells, which is augmented by co-administration of IL-2. Immunization of mice with the model antigen KLH in the presence of RA and IL-2 induces T cells that secrete IL-10, but not IL-17 or IFN-γ, and express LAG-3, CD49b and PD-1 but not Foxp3, a phenotype typical of Tr1 cells. Furthermore, immunization of mice with the autoantigen MOG in the presence of RA and IL-2 induces Tr1 cells, which suppress pathogenic Th1 and Th17 cells that mediate the development of experimental autoimmune encephalomyelitis (EAE), an autoimmune disease of the CNS. Furthermore, immunization with a surrogate autoantigen, RA and IL-2 prevents development of spontaneous autoimmune uveitis. Our findings demonstrate that the induction of autoantigen-specific Tr1 cells can prevent the development of autoimmunity.


Assuntos
Autoantígenos/imunologia , Autoimunidade/imunologia , Linfócitos T Reguladores/imunologia , Tretinoína/imunologia , Animais , Encefalomielite Autoimune Experimental/imunologia , Feminino , Fatores de Transcrição Forkhead/imunologia , Interleucina-10/imunologia , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células Th1/imunologia , Células Th17/imunologia
10.
Nat Immunol ; 19(12): 1330-1340, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420624

RESUMO

Up to 49% of certain types of cancer are attributed to obesity, and potential mechanisms include overproduction of hormones, adipokines, and insulin. Cytotoxic immune cells, including natural killer (NK) cells and CD8+ T cells, are important in tumor surveillance, but little is known about the impact of obesity on immunosurveillance. Here, we show that obesity induces robust peroxisome proliferator-activated receptor (PPAR)-driven lipid accumulation in NK cells, causing complete 'paralysis' of their cellular metabolism and trafficking. Fatty acid administration, and PPARα and PPARδ (PPARα/δ) agonists, mimicked obesity and inhibited mechanistic target of rapamycin (mTOR)-mediated glycolysis. This prevented trafficking of the cytotoxic machinery to the NK cell-tumor synapse. Inhibiting PPARα/δ or blocking the transport of lipids into mitochondria reversed NK cell metabolic paralysis and restored cytotoxicity. In vivo, NK cells had blunted antitumor responses and failed to reduce tumor growth in obesity. Our results demonstrate that the lipotoxic obese environment impairs immunosurveillance and suggest that metabolic reprogramming of NK cells may improve cancer outcomes in obesity.


Assuntos
Vigilância Imunológica/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Melanoma Experimental/imunologia , Obesidade/imunologia , Adulto , Animais , Feminino , Humanos , Células Matadoras Naturais/patologia , Masculino , Melanoma Experimental/complicações , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Obesidade/complicações , Adulto Jovem
11.
J Crohns Colitis ; 12(7): 835-848, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29608690

RESUMO

BACKGROUND AND AIMS: microRNAs regulate gene expression and influence the pathogenesis of human diseases. The present study investigated the role of microRNA-21 [miR-21] in the pathogenesis of intestinal inflammation, because miR-21 is highly expressed in inflammatory bowel disease. Inflammatory bowel disease is associated with intestinal barrier dysfunction and an altered gut microbiota. Recent studies have demonstrated that host microRNAs can shape the microbiota. Thus, we determined the influence of miR-21 on the gut microbiota and observed the subsequent impact in a dextran sodium sulphate [DSS]-induced colitis model. METHODS: The influence of miR-21 on the gut microbiota and inflammation was assessed in wild-type [WT] and miR-21-/- mice, in co-housed mice, following antibiotic depletion of the microbiota, or by colonization of germ-free [GF] mice with fecal homogenate, prior to DSS administration. We carried out 16S rRNA sequencing on WT and miR-21-/- mice to dissect potential differences in the gut microbiota. RESULTS: miR-21-/- mice have reduced susceptibility to DSS-induced colitis compared with WT mice. Co-housing conferred some protection to WT mice, while GF mice colonized with fecal homogenate from miR-21-/- were protected from DSS colitis compared with those colonized with WT homogenate. Further supporting a role for the microbiota in the observed phenotype, the protection afforded by miR-21 depletion was lost when mice were pre-treated with antibiotics. The 16S rRNA sequencing revealed significant differences in the composition of WT and miR-21-/- intestinal microbiota. CONCLUSIONS: These findings suggest that miR-21 influences the pathogenesis of intestinal inflammation by causing propagation of a disrupted gut microbiota.


Assuntos
Colite/genética , Colite/microbiologia , Microbioma Gastrointestinal/genética , Predisposição Genética para Doença , MicroRNAs/genética , Animais , Antibacterianos/farmacologia , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Deleção de Genes , Masculino , Camundongos , Fatores de Proteção , RNA Ribossômico 16S/análise
12.
J Autoimmun ; 2018 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-29395738

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS) that shares many features with the human disease. This review will focus on the role of IL-17-secreting CD4 and γδ T cells in EAE and MS, the plasticity of Th17 cells in vivo and the application of these findings to the understating of the pathogenesis and the development of new treatments for MS. There is convincing evidence that IL-17-secreting CD4 T cells (Th17 cells) and IL-17-secreting γδ T cells play a critical pathogenic role in central nervous system (CNS) inflammation in EAE and MS. Indeed a significant number of the major discoveries on the pathogenic role of IL-17-secreting T cells in autoimmunity were made in the EAE model. These included the first demonstration that IL-23-activated IL-17-secreting T cells are the key T cells in driving autoimmune disease pathology. Although the early studies on IL-17 focused on Th17 cells, it was later demonstrated that γδ T cells were an important early source of IL-17 and IL-21 that helped amplify IL-17 production by Th17 cells in autoimmune diseases. Furthermore, it emerged that Th1 cells can also have encephalitogenic activity and that there was considerable plasticity in these T cell responses, with Th17 cells reverting to a Th1 phenotype in vivo. This questioned the pathogenic role of IL-17 and suggested that other cytokines, such as IFN-γ, GM-CSF and TNF, may be important. Nevertheless, biological drugs that target the IL-23-IL-17 pathway are highly effective in treating human psoriasis and are showing promise in the treatment of relapsing remitting MS and other T-cell mediated autoimmune diseases.

13.
Nat Commun ; 8(1): 1923, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234010

RESUMO

The transcription factor BMAL1 is a core component of the molecular clock, regulating biological pathways that drive 24 h (circadian) rhythms in behaviour and physiology. The molecular clock has a profound influence on innate immune function, and circadian disruption is linked with increased incidence of multiple sclerosis (MS). However, the mechanisms underlying this association are unknown. Here we show that BMAL1 and time-of-day regulate the accumulation and activation of various immune cells in a CNS autoimmune disease model, experimental autoimmune encephalomyelitis (EAE). In myeloid cells, BMAL1 maintains anti-inflammatory responses and reduces T cell polarization. Loss of myeloid BMAL1 or midday immunizations to induce EAE create an inflammatory environment in the CNS through expansion and infiltration of IL-1ß-secreting CD11b+Ly6Chi monocytes, resulting in increased pathogenic IL-17+/IFN-γ+ T cells. These findings demonstrate the importance of the molecular clock in modulating innate and adaptive immune crosstalk under autoimmune conditions.


Assuntos
Fatores de Transcrição ARNTL/genética , Relógios Circadianos , Encefalomielite Autoimune Experimental/etiologia , Linfócitos T/patologia , Fatores de Transcrição ARNTL/metabolismo , Animais , Antígeno CD11b/metabolismo , Doenças do Sistema Nervoso Central/etiologia , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Linfócitos T/imunologia
14.
J Immunol ; 198(1): 363-374, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27864475

RESUMO

γδ T cells play a role in protective immunity to infection at mucosal surface, but also mediate pathology in certain autoimmune diseases through innate IL-17 production. Recent reports have suggested that γδ T cells can have memory analogous to conventional αß T cells. In this study we have examined the role of γδ T cells in immunity to the respiratory pathogen Bordetella pertussis γδ T cells, predominantly Vγ4-γ1- cells, produced IL-17 in the lungs as early as 2 h after infection. The bacterial burden during primary infection was significantly enhanced and the induction of antimicrobial peptides was reduced in the absence of early IL-17. A second peak of γδ T cells is detected in the lungs 7-14 d after challenge and these γδ T cells were pathogen specific. γδ T cells, exclusively Vγ4, from the lungs of infected but not naive mice produced IL-17 in response to heat-killed B. pertussis in the presence of APC. Furthermore, γδ T cells from the lungs of mice reinfected with B. pertussis produced significantly more IL-17 than γδ T cells from infected unprimed mice. γδ T cells with a tissue resident memory T cell phenotype (CD69+CD103+) were expanded in the lungs during infection with B. pertussis and proliferated rapidly after rechallenge of convalescent mice. Our findings demonstrate that lung γδ T cells provide an early source of innate IL-17, which promotes antimicrobial peptide production, whereas pathogen-specific Vγ4 cells function in adaptive immunological memory against B. pertussis.


Assuntos
Memória Imunológica/imunologia , Interleucina-17/biossíntese , Subpopulações de Linfócitos T/imunologia , Coqueluche/imunologia , Imunidade Adaptativa/imunologia , Animais , Bordetella pertussis/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Imunidade Inata/imunologia , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Subpopulações de Linfócitos T/metabolismo , Coqueluche/metabolismo
15.
Cancer Immunol Immunother ; 65(12): 1491-1498, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27680570

RESUMO

The co-inhibitory molecule PD-1 suppresses T cell responses and has been targeted in the treatment of cancer. Here, we examined the role of PD-1 in regulating the balance between regulatory and effector T cells and whether blocking PD-1 could enhance tumour vaccine-induced protective immunity. A significantly higher proportion of tumour-resident T cells expressed PD-1 and Foxp3 compared with T cells in the tumour circulation or draining lymph nodes, and this correlated with a lower frequency of IFN-γ- and TNF-secreting CD8 T cells. Blocking PD-1 with a specific antibody reduced Foxp3+ regulatory T (Treg) cell induction and enhanced proliferation, cytokine production, and tumour killing by CD8 T cells. Treatment of CT26 tumour-bearing mice with anti-PD-1 in combination with a vaccine, comprising heat-shocked irradiated tumour cells and a TLR 7/8 agonist, significantly reduced tumour growth and enhanced survival. Furthermore, surviving mice resisted tumour re-challenge. The rejection of tumours in mice treated with the anti-PD-1 vaccine combination was associated with a reduction in tumour-infiltrating Treg cells and enhancement of IFN-γ-secreting CD8 T cells. Our findings demonstrate that high PD-1 expression correlates with increased tumour-infiltrating Treg cells and reduced effector T cells and that when combined with a potent antigen-adjuvant combination, blocking PD-1 effectively enhances anti-tumour immunity.


Assuntos
Vacinas Anticâncer/imunologia , Fatores de Transcrição Forkhead/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C
16.
Sci Rep ; 6: 25769, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27161290

RESUMO

A major goal of biology is to develop a quantitative ligand-binding assay that does not involve the use of radioactivity. Existing fluorescence-based assays have a serious drawback due to fluorescence quenching that accompanies the binding of fluorescently-labeled ligands to their receptors. This limitation of existing fluorescence-based assays prevents the number of cellular receptors under investigation from being accurately measured. We have developed a method where FITC-labeled proteins bound to a cell surface are proteolyzed extensively to eliminate fluorescence quenching and then the fluorescence of the resulting sample is compared to that of a known concentration of the proteolyzed FITC-protein employed. This step enables the number of cellular receptors to be measured quantitatively. We expect that this method will provide researchers with a viable alternative to the use of radioactivity in ligand binding assays.


Assuntos
Bioensaio/métodos , Animais , Bovinos , Flagelos/metabolismo , Fluoresceína/metabolismo , Fluoresceína-5-Isotiocianato/metabolismo , Fluorescência , Concentração de Íons de Hidrogênio , Ligantes , Metilaminas , Pronase/metabolismo , Proteólise , Prótons , Soroalbumina Bovina/metabolismo , Transferrina/metabolismo , Trypanosoma brucei brucei/metabolismo
17.
Immunol Cell Biol ; 94(8): 763-73, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27089940

RESUMO

Retinoic acid (RA) in the steady state enhances induction of Foxp3(+) regulatory T (Treg) cells and inhibits differentiation of Th1 and Th17 cells, thereby maintaining tolerance, but can in inflammatory conditions promote effector Th1 and Th17 cells that mediate inflammation. IL-17-producing γδ T cells have recently been shown to have a major pathogenic role in autoimmune diseases. Here, we examined the immunomodulatory effects of RA on γδ T cells. We found that RA had a dramatic suppressive effect on IL-17A and IL-17F production by γδ T cells stimulated with IL-1ß and IL-23. RA suppressed RORγt, IL-1R and IL-23R expression in γδ T cells. Treatment of mice with RA suppressed IL-17 production by γδ T cells in vivo. Furthermore, treatment of T cells with RA attenuated their ability to induce disease in experimental autoimmune encephalomyelitis (EAE), a murine model for multiple sclerosis. This was associated with a reduction in the number of central nervous system-infiltrating γδ T cells, but also CD4(+) T cells that produced IL-17A, IL-17F or GM-CSF. Interestingly, treatment of γδ T cells with RA or removal of γδ T cells from a bulk population of T cells significantly reduced their capacity to induce EAE, demonstrating a critical role for γδ T cells in promoting pathogenic Th17 cells. Our findings demonstrate that the anti-inflammatory properties of RA are mediated in part by suppressing STAT3-mediated activation of cytokine production and cytokine receptor expression in γδ T cells, which suppresses their ability to activate Th17 cells.


Assuntos
Sistema Nervoso Central/imunologia , Interleucina-17/biossíntese , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Tretinoína/farmacologia , Transferência Adotiva , Animais , Autoimunidade , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Fatores Imunológicos/farmacologia , Interleucina-1beta/metabolismo , Interleucina-23/metabolismo , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/imunologia
18.
PLoS Genet ; 11(10): e1005501, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26427057

RESUMO

All-trans retinoic acid (ATRA) is instrumental to male germ cell differentiation, but its mechanism of action remains elusive. To address this question, we have analyzed the phenotypes of mice lacking, in spermatogonia, all rexinoid receptors (RXRA, RXRB and RXRG) or all ATRA receptors (RARA, RARB and RARG). We demonstrate that the combined ablation of RXRA and RXRB in spermatogonia recapitulates the set of defects observed both upon ablation of RAR in spermatogonia. We also show that ATRA activates RAR and RXR bound to a conserved regulatory region to increase expression of the SALL4A transcription factor in spermatogonia. Our results reveal that this major pluripotency gene is a target of ATRA signaling and that RAR/RXR heterodimers are the functional units driving its expression in spermatogonia. They add to the mechanisms through which ATRA promote expression of the KIT tyrosine kinase receptor to trigger a critical step in spermatogonia differentiation. Importantly, they indicate also that meiosis eventually occurs in the absence of a RAR/RXR pathway within germ cells and suggest that instructing this process is either ATRA-independent or requires an ATRA signal originating from Sertoli cells.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Proteínas Proto-Oncogênicas c-kit/genética , Espermatogônias/crescimento & desenvolvimento , Fatores de Transcrição/biossíntese , Tretinoína/metabolismo , Animais , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Meiose/genética , Camundongos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores X de Retinoides/genética , Células de Sertoli/metabolismo , Espermatogênese/genética , Espermatogônias/metabolismo , Fatores de Transcrição/genética
19.
J Immunol ; 194(3): 1252-60, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25548224

RESUMO

Activation of the noncanonical inflammasome, mediated by caspase-11, serves as an additional pathway for the production of the proinflammatory cytokines IL-1ß and IL-18. Noncanonical inflammasome activity occurs during host defense against Gram-negative bacteria and in models of acute septic shock. We propose that the noncanonical inflammasome is activated in mice during acute intestinal inflammation elicited by dextran sodium sulfate (DSS), a model of experimental colitis. We find that caspase-11(-/-) mice display enhanced susceptibility to DSS, because of impaired IL-18 production. The impaired IL-18 levels observed are shown to result in reduced intestinal epithelial cell proliferation and increased cell death. We also suggest that a novel type II IFN-dependent, type I IFN-TRIF-independent signaling pathway is required for in vivo caspase-11 production in intestinal epithelial cells during DSS colitis. Collectively, these data suggest that IFN-γ-mediated caspase-11 expression has a key role maintaining intestinal epithelial barrier integrity in vivo during experimentally induced acute colitis.


Assuntos
Caspases/metabolismo , Colite/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Caspases/genética , Caspases Iniciadoras , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Citocinas/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Expressão Gênica , Predisposição Genética para Doença , Imuno-Histoquímica , Interferon gama/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Fenótipo , Transdução de Sinais
20.
J Immunol ; 192(7): 2953-8, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24659788

RESUMO

Retinoic acid (RA) is produced by a number of cell types, including macrophages and dendritic cells, which express retinal dehydrogenases that convert vitamin A to its main biologically active metabolite, all-trans RA. All-trans RA binds to its nuclear retinoic acid receptors that are expressed in lymphoid cells and act as transcription factors to regulate cell homing and differentiation. RA production by CD103(+) dendritic cells and alveolar macrophages functions with TGF-ß to promote conversion of naive T cells into Foxp3(+) regulatory T cells and, thereby, maintain mucosal tolerance. Furthermore, RA inhibits the differentiation of naive T cells into Th17 cells. However, Th1 and Th17 responses are constrained during vitamin A deficiency and in nuclear RA receptor α-defective mice. Furthermore, RA promotes effector T cell responses during infection or autoimmune diseases. Thus, RA plays a role in immune homeostasis in the steady-state but activates pathogenic T cells in conditions of inflammation.


Assuntos
Diferenciação Celular/imunologia , Imunidade Inata/imunologia , Linfócitos T/imunologia , Tretinoína/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Modelos Imunológicos , Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Tretinoína/metabolismo , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...