Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
mSystems ; 9(6): e0084723, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38809013

RESUMO

Bacterial phage shock protein (PSP) systems stabilize the bacterial cell membrane and protect against envelope stress. These systems have been associated with virulence, but despite their critical roles, PSP components are not well characterized outside proteobacteria. Using comparative genomics and protein sequence-structure-function analyses, we systematically identified and analyzed PSP homologs, phyletic patterns, domain architectures, and gene neighborhoods. This approach underscored the evolutionary significance of the system, revealing that its core protein PspA (Snf7 in ESCRT outside bacteria) was present in the last universal common ancestor and that this ancestral functionality has since diversified into multiple novel, distinct PSP systems across life. Several novel partners of the PSP system were identified: (i) the Toastrack domain, likely facilitating assembly of sub-membrane stress-sensing and signaling complexes, (ii) the newly defined HTH-associated α-helical signaling domain-PadR-like transcriptional regulator pair system, and (iii) multiple independent associations with ATPase, CesT/Tir-like chaperone, and Band-7 domains in proteins thought to mediate sub-membrane dynamics. Our work also uncovered links between the PSP components and other domains, such as novel variants of SHOCT-like domains, suggesting roles in assembling membrane-associated complexes of proteins with disparate biochemical functions. Results are available at our interactive web app, https://jravilab.org/psp.IMPORTANCEPhage shock proteins (PSP) are virulence-associated, cell membrane stress-protective systems. They have mostly been characterized in Proteobacteria and Firmicutes. We now show that a minimal PSP system was present in the last universal common ancestor that evolved and diversified into newly identified functional contexts. Recognizing the conservation and evolution of PSP systems across bacterial phyla contributes to our understanding of stress response mechanisms in prokaryotes. Moreover, the newly discovered PSP modularity will likely prompt new studies of lineage-specific cell envelope structures, lifestyles, and adaptation mechanisms. Finally, our results validate the use of domain architecture and genetic context for discovery in comparative genomics.


Assuntos
Proteínas de Bactérias , Evolução Molecular , Proteínas de Choque Térmico , Estresse Fisiológico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/química , Estresse Fisiológico/genética , Filogenia , Domínios Proteicos , Membrana Celular/metabolismo
2.
PLoS Genet ; 19(7): e1010834, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418503

RESUMO

Sulfur is an indispensable element for bacterial proliferation. Prior studies demonstrated that the human pathogen Staphylococcus aureus utilizes glutathione (GSH) as a source of nutrient sulfur; however, mechanisms of GSH acquisition are not defined. Here, we identify a five-gene locus comprising a putative ABC-transporter and predicted γ-glutamyl transpeptidase (ggt) that promotes S. aureus proliferation in medium supplemented with either reduced or oxidized GSH (GSSG) as the sole source of nutrient sulfur. Based on these phenotypes, we name this transporter operon the glutathione import system (gisABCD). Ggt is encoded within the gisBCD operon, and we show that the enzyme is capable of liberating glutamate using either GSH or GSSG as substrates, demonstrating it is a bona fide γ-glutamyl transpeptidase. We also determine that Ggt is expressed in the cytoplasm, representing only the second example of cytoplasmic Ggt localization, the other being Neisseria meningitidis. Bioinformatic analyses revealed that Staphylococcus species closely related to S. aureus encode GisABCD-Ggt homologs. However, homologous systems were not detected in Staphylococcus epidermidis. Consequently, we establish that GisABCD-Ggt provides a competitive advantage for S. aureus over S. epidermidis in a GSH- and GSSG-dependent manner. Overall, this study describes the discovery of a nutrient sulfur acquisition system in S. aureus that targets GSSG in addition to GSH and promotes competition against other staphylococci commonly associated with the human microbiota.


Assuntos
Staphylococcus aureus , gama-Glutamiltransferase , Humanos , Staphylococcus aureus/genética , gama-Glutamiltransferase/genética , Dissulfeto de Glutationa , Glutationa/genética , Enxofre
3.
Dental Press J Orthod ; 28(2): e2321345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283426

RESUMO

OBJECTIVES: This clinical trial was conducted to evaluate the stability and failure rate of surface-treated orthodontic mini-implants and determine whether they differ from those of non-surface-treated orthodontic mini-implants. TRIAL DESIGN: Randomized clinical trial with a split-mouth study design. SETTING: Department of Orthodontics, SRM Dental College, Chennai. PARTICIPANTS: Patients who required orthodontic mini-implants for anterior retraction in both arches. METHODS: Self-drilling, tapered, titanium orthodontic mini-implants with and without surface treatment were placed in each patient following a split-mouth design. The maximum insertion and removal torques were measured for each implant using a digital torque driver. The failure rates were calculated for each type of mini-implant. RESULTS: The mean maximum insertion torque was 17.9 ± 5.6 Ncm for surface-treated mini-implants and 16.4 ± 9.0 Ncm for non-surface-treated mini-implants. The mean maximum removal torque was 8.1 ± 2.9 Ncm for surface-treated mini-implants and 3.3 ± 1.9 Ncm for non-surface-treated mini-implants. Among the failed implants, 71.4% were non-surface-treated mini-implants and 28.6% were surface-treated mini-implants. CONCLUSION: The insertion torque and failure rate did not differ significantly between the groups, whereas the removal torque was significantly higher in the surface-treated group. Thus, surface treatment using sandblasting and acid etching may improve the secondary stability of self-drilling orthodontic mini-implants. TRIAL REGISTRATION: The trial was registered in the Clinical Trials Registry, India (ICMR NIMS). Registration number: CTRI/2019/10/021718.


Assuntos
Implantes Dentários , Procedimentos de Ancoragem Ortodôntica , Ortodontia , Humanos , Taxa de Sobrevida , Índia , Torque , Desenho de Aparelho Ortodôntico
4.
Proc Natl Acad Sci U S A ; 120(2): e2208787120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36598937

RESUMO

Wnt ligands are considered classical morphogens, for which the strength of the cellular response is proportional to the concentration of the ligand. Herein, we show an emergent property of bistability arising from feedback among the Wnt destruction complex proteins that target the key transcriptional co-activator ß-catenin for degradation. Using biochemical reconstitution, we identified positive feedback between the scaffold protein Axin and the kinase glycogen synthase kinase 3 (GSK3). Theoretical modeling of this feedback between Axin and GSK3 suggested that the activity of the destruction complex exhibits bistable behavior. We experimentally confirmed these predictions by demonstrating that cellular cytoplasmic ß-catenin concentrations exhibit an "all-or-none" response with sustained memory (hysteresis) of the signaling input. This bistable behavior was transformed into a graded response and memory was lost through inhibition of GSK3. These findings provide a mechanism for establishing decisive, switch-like cellular response and memory upon Wnt pathway stimulation.


Assuntos
Complexo de Sinalização da Axina , beta Catenina , Complexo de Sinalização da Axina/metabolismo , beta Catenina/metabolismo , Proteína Axina/genética , Proteína Axina/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Retroalimentação , Fosforilação , Via de Sinalização Wnt/fisiologia
5.
Dental press j. orthod. (Impr.) ; 28(2): e2321345, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS, BBO - Odontologia | ID: biblio-1439988

RESUMO

ABSTRACT Objectives: This clinical trial was conducted to evaluate the stability and failure rate of surface-treated orthodontic mini-implants and determine whether they differ from those of non-surface-treated orthodontic mini-implants. Trial Design: Randomized clinical trial with a split-mouth study design. Setting: Department of Orthodontics, SRM Dental College, Chennai. Participants: Patients who required orthodontic mini-implants for anterior retraction in both arches. Methods: Self-drilling, tapered, titanium orthodontic mini-implants with and without surface treatment were placed in each patient following a split-mouth design. The maximum insertion and removal torques were measured for each implant using a digital torque driver. The failure rates were calculated for each type of mini-implant. Results: The mean maximum insertion torque was 17.9 ± 5.6 Ncm for surface-treated mini-implants and 16.4 ± 9.0 Ncm for non-surface-treated mini-implants. The mean maximum removal torque was 8.1 ± 2.9 Ncm for surface-treated mini-implants and 3.3 ± 1.9 Ncm for non-surface-treated mini-implants. Among the failed implants, 71.4% were non-surface-treated mini-implants and 28.6% were surface-treated mini-implants. Conclusion: The insertion torque and failure rate did not differ significantly between the groups, whereas the removal torque was significantly higher in the surface-treated group. Thus, surface treatment using sandblasting and acid etching may improve the secondary stability of self-drilling orthodontic mini-implants. Trial registration: The trial was registered in the Clinical Trials Registry, India (ICMR NIMS). Registration number: CTRI/2019/10/021718


RESUMO Objetivos: Este ensaio clínico foi conduzido para avaliar a estabilidade e a taxa de falha de mini-implantes ortodônticos com superfície tratada, e determinar se elas diferem das dos mini-implantes ortodônticos sem superfície tratada. Desenho do estudo: Ensaio clínico randomizado com desenho de boca dividida. Instituição: Department of Orthodontics, SRM Dental College, Chennai/India. Participantes: Pacientes que necessitavam de mini-implantes ortodônticos para retração anterior em ambas as arcadas. Métodos: Mini-implantes ortodônticos autoperfurantes, cônicos, de titânio com ou sem tratamento de superfície, foram colocados em cada paciente, seguindo um desenho de boca dividida. Os torques máximos de inserção e de remoção foram medidos para cada mini-implante, usando um torquímetro digital. As taxas de falha foram calculadas para cada tipo de mini-implante. Resultados: O valor médio do torque máximo de inserção foi de 17,9 ± 5,6 Ncm para mini-implantes com superfície tratada e 16,4 ± 9,0 Ncm para mini-implantes sem superfície tratada. O valor médio do torque máximo de remoção foi de 8,1 ± 2,9 Ncm para mini-implantes com superfície tratada e 3,3 ± 1,9 Ncm para mini-implantes sem superfície tratada. Entre os implantes que falharam, 71,4% eram mini-implantes sem superfície tratada e 28,6% eram mini-implantes com superfície tratada. Conclusão: O torque de inserção e a taxa de falha não diferiram significativamente entre os grupos; porém, o torque de remoção foi significativamente maior no grupo com superfície tratada. Assim, o tratamento de superfície com jateamento e condicionamento ácido pode melhorar a estabilidade secundária dos mini-implantes ortodônticos autoperfurantes. Registro do estudo: Esse estudo foi registrado no Clinical Trials Registry, Índia (ICMR NIMS). Número de registro: CTRI/2019/10/021718

6.
J Bacteriol ; 204(8): e0016322, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35880876

RESUMO

A fundamental requirement for life is the replication of an organism's DNA. Studies in Escherichia coli and Bacillus subtilis have set the paradigm for DNA replication in bacteria. During replication initiation in E. coli and B. subtilis, the replicative helicase is loaded onto the DNA at the origin of replication by an ATPase helicase loader. However, most bacteria do not encode homologs to the helicase loaders in E. coli and B. subtilis. Recent work has identified the DciA protein as a predicted helicase operator that may perform a function analogous to the helicase loaders in E. coli and B. subtilis. DciA proteins, which are defined by the presence of a DUF721 domain (termed the DciA domain herein), are conserved in most bacteria but have only been studied in mycobacteria and gammaproteobacteria (Pseudomonas aeruginosa and Vibrio cholerae). Sequences outside the DciA domain in Mycobacterium tuberculosis DciA are essential for protein function but are not conserved in the P. aeruginosa and V. cholerae homologs, raising questions regarding the conservation and evolution of DciA proteins across bacterial phyla. To comprehensively define the DciA protein family, we took a computational evolutionary approach and analyzed the domain architectures and sequence properties of DciA domain-containing proteins across the tree of life. These analyses identified lineage-specific domain architectures among DciA homologs, as well as broadly conserved sequence-structural motifs. The diversity of DciA proteins represents the evolution of helicase operation in bacterial DNA replication and highlights the need for phylum-specific analyses of this fundamental biological process. IMPORTANCE Despite the fundamental importance of DNA replication for life, this process remains understudied in bacteria outside Escherichia coli and Bacillus subtilis. In particular, most bacteria do not encode the helicase-loading proteins that are essential in E. coli and B. subtilis for DNA replication. Instead, most bacteria encode a DciA homolog that likely constitutes the predominant mechanism of helicase operation in bacteria. However, it is still unknown how DciA structure and function compare across diverse phyla that encode DciA proteins. In this study, we performed computational evolutionary analyses to uncover tremendous diversity among DciA homologs. These studies provide a significant advance in our understanding of an essential component of the bacterial DNA replication machinery.


Assuntos
Proteínas de Bactérias , Escherichia coli , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , DNA/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo
7.
PLoS Comput Biol ; 18(7): e1010164, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35862309

RESUMO

Conferences are spaces to meet and network within and across academic and technical fields, learn about new advances, and share our work. They can help define career paths and create long-lasting collaborations and opportunities. However, these opportunities are not equal for all. This article introduces 10 simple rules to host an inclusive conference based on the authors' recent experience organizing the 2021 edition of the useR! statistical computing conference, which attracted a broad range of participants from academia, industry, government, and the nonprofit sector. Coming from different backgrounds, career stages, and even continents, we embraced the challenge of organizing a high-quality virtual conference in the context of the Coronavirus Disease 2019 (COVID-19) pandemic and making it a kind, inclusive, and accessible experience for as many people as possible. The rules result from our lessons learned before, during, and after the organization of the conference. They have been written mainly for potential organizers and selection committees of conferences and contain multiple practical tips to help a variety of events become more accessible and inclusive. We see this as a starting point for conversations and efforts towards building more inclusive conferences across the world. * Translated versions of the English abstract and the list of rules are available in 10 languages in S1 Text: Arabic, French, German, Italian, Japanese, Korean, Portuguese, Spanish, Tamil, and Thai.


Assuntos
COVID-19 , COVID-19/epidemiologia , Humanos , Índia , Itália , Pandemias , Redação
8.
Microb Genom ; 8(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35904424

RESUMO

Listeria monocytogenes (Lm) is a bacterial pathogen that causes listeriosis in immunocompromised individuals, particularly pregnant women. Several virulence factors support the intracellular lifecycle of Lm and facilitate cell-to-cell spread, allowing it to occupy multiple niches within the host and cross-protective barriers, including the placenta. One family of virulence factors, internalins, contributes to Lm pathogenicity by inducing specific uptake and conferring tissue tropism. Over 25 internalins have been identified thus far, but only a few have been extensively studied. Internalins contain leucine-rich repeat (LRR) domains that enable protein-protein interactions, allowing Lm to bind host proteins. Notably, other Listeria species express internalins but cannot colonize human hosts, prompting questions regarding the evolution of internalins within the genus Listeria. Internalin P (InlP) promotes placental colonization through interaction with the host protein afadin. Although prior studies of InlP have begun to elucidate its role in Lm pathogenesis, there remains a lack of information regarding homologs in other Listeria species. Here, we have used a computational evolutionary approach to identify InlP homologs in additional Listeria species. We found that Listeria ivanovii londoniensis (Liv) and Listeria seeligeri (Ls) encode InlP homologs. We also found InlP-like homologs in Listeria innocua and the recently identified species Listeria costaricensis. All newly identified homologs lack the full-length LRR6 and LRR7 domains found in Lm's InlP. These findings are informative regarding the evolution of one key Lm virulence factor, InlP, and serve as a springboard for future evolutionary studies of Lm pathogenesis as well as mechanistic studies of Listeria internalins.


Assuntos
Listeria monocytogenes , Listeria , Listeriose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Humanos , Listeria/genética , Listeria/metabolismo , Listeria monocytogenes/genética , Listeriose/microbiologia , Placenta/metabolismo , Placenta/microbiologia , Gravidez , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
9.
Nat Microbiol ; 7(8): 1210-1220, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35817890

RESUMO

Vibrio cholerae biotype El Tor is perpetuating the longest cholera pandemic in recorded history. The genomic islands VSP-1 and VSP-2 distinguish El Tor from previous pandemic V. cholerae strains. Using a co-occurrence analysis of VSP genes in >200,000 bacterial genomes we built gene networks to infer biological functions encoded in these islands. This revealed that dncV, a component of the cyclic-oligonucleotide-based anti-phage signalling system (CBASS) anti-phage defence system, co-occurs with an uncharacterized gene vc0175 that we rename avcD for anti-viral cytodine deaminase. We show that AvcD is a deoxycytidylate deaminase and that its activity is post-translationally inhibited by a non-coding RNA named AvcI. AvcID and bacterial homologues protect bacterial populations against phage invasion by depleting free deoxycytidine nucleotides during infection, thereby decreasing phage replication. Homologues of avcD exist in all three domains of life, and bacterial AvcID defends against phage infection by combining traits of two eukaryotic innate viral immunity proteins, APOBEC and SAMHD1.


Assuntos
Bacteriófagos , Cólera , Vibrio cholerae , Bacteriófagos/genética , Cólera/microbiologia , Toxina da Cólera , Ilhas Genômicas , Humanos , Vibrio cholerae/genética
10.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34013329

RESUMO

The basis of several recent methods for drug repurposing is the key principle that an efficacious drug will reverse the disease molecular 'signature' with minimal side effects. This principle was defined and popularized by the influential 'connectivity map' study in 2006 regarding reversal relationships between disease- and drug-induced gene expression profiles, quantified by a disease-drug 'connectivity score.' Over the past 15 years, several studies have proposed variations in calculating connectivity scores toward improving accuracy and robustness in light of massive growth in reference drug profiles. However, these variations have been formulated inconsistently using various notations and terminologies even though they are based on a common set of conceptual and statistical ideas. Therefore, we present a systematic reconciliation of multiple disease-drug similarity metrics ($ES$, $css$, $Sum$, $Cosine$, $XSum$, $XCor$, $XSpe$, $XCos$, $EWCos$) and connectivity scores ($CS$, $RGES$, $NCS$, $WCS$, $Tau$, $CSS$, $EMUDRA$) by defining them using consistent notation and terminology. In addition to providing clarity and deeper insights, this coherent definition of connectivity scores and their relationships provides a unified scheme that newer methods can adopt, enabling the computational drug-development community to compare and investigate different approaches easily. To facilitate the continuous and transparent integration of newer methods, this article will be available as a live document (https://jravilab.github.io/connectivity_scores) coupled with a GitHub repository (https://github.com/jravilab/connectivity_scores) that any researcher can build on and push changes to.


Assuntos
Biologia Computacional/métodos , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos/métodos , Perfilação da Expressão Gênica/métodos , Farmacogenética/métodos , Algoritmos , Biomarcadores , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Transcriptoma
11.
Front Microbiol ; 12: 663468, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889148

RESUMO

S-layers are self-assembled crystalline 2D lattices enclosing the cell envelopes of several bacteria and archaea. Despite their abundance, the landscape of S-layer structure and function remains a land of wonder. By virtue of their location, bacterial S-layers have been hypothesized to add structural stability to the cell envelope. In addition, S-layers are implicated in mediating cell-environment and cell-host interactions playing a key role in adhesion, cell growth, and division. Significant strides in the understanding of these bacterial cell envelope components were made possible by recent studies that have provided structural and functional insights on the critical S-layer and S-layer-associated proteins (SLPs and SLAPs), highlighting their roles in pathogenicity and their potential as therapeutic or vaccine targets. In this mini-review, we revisit the sequence-structure-function relationships of S-layers, SLPs, and SLAPs in Gram-positive pathogens, focusing on the best-studied classes, Bacilli (Bacillus anthracis) and Clostridia (Clostridioides difficile). We delineate the domains and their architectures in archetypal S-layer proteins across Gram-positive genera and reconcile them with experimental findings. Similarly, we highlight a few key "flavors" of SLPs displayed by Gram-positive pathogens to assemble and support the bacterial S-layers. Together, these findings indicate that S-layers are excellent candidates for translational research (developing diagnostics, antibacterial therapeutics, and vaccines) since they display the three crucial characteristics: accessible location at the cell surface, abundance, and unique lineage-specific signatures.

12.
Infect Immun ; 88(3)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31843961

RESUMO

Staphylococcus aureus is a significant human pathogen due to its capacity to cause a multitude of diseases. As such, S. aureus efficiently pillages vital nutrients from the host; however, the molecular mechanisms that support sulfur acquisition during infection have not been established. One of the most abundant extracellular sulfur-containing metabolites within the host is cysteine, which acts as the major redox buffer in the blood by transitioning between reduced and oxidized (cystine) forms. We therefore hypothesized that S. aureus acquires host-derived cysteine and cystine as sources of nutrient sulfur during systemic infection. To test this hypothesis, we used the toxic cystine analogue selenocystine to initially characterize S. aureus homologues of the Bacillus subtilis cystine transporters TcyABC and TcyP. We found that genetic inactivation of both TcyA and TcyP induced selenocystine resistance. The double mutant also failed to proliferate in medium supplemented with cystine, cysteine, or N-acetyl cysteine as the sole sulfur source. However, only TcyABC was necessary for proliferation in defined medium containing homocystine as the sulfur source. Using a murine model of systemic infection, we observed tcyP-dependent competitive defects in the liver and heart, indicating that this sulfur acquisition strategy supports proliferation of S. aureus in these organs. Phylogenetic analyses identified TcyP homologues in many pathogenic species, implying that this sulfur procurement strategy is conserved. In total, this study is the first to experimentally validate sulfur acquisition systems in S. aureus and establish their importance during pathogenesis.


Assuntos
Cistina/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/fisiologia , Enxofre/metabolismo , Animais , Camundongos
13.
Antonie Van Leeuwenhoek ; 111(5): 753-760, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29488183

RESUMO

The phage shock protein (Psp) stress-response system protects bacteria from envelope stress through a cascade of interactions with other proteins and membrane lipids to stabilize the cell membrane. A key component of this multi-gene system is PspA, an effector protein that is found in diverse bacterial phyla, archaea, cyanobacteria, and chloroplasts. Other members of the Psp system include the cognate partners of PspA that are part of known operons: pspF||pspABC in Proteobacteria, liaIHGFSR in Firmicutes, and clgRpspAMN in Actinobacteria. Despite the functional significance of the Psp system, the conservation of PspA and other Psp functions, as well as the various genomic contexts of PspA, remain poorly characterized in Actinobacteria. Here we utilize a computational evolutionary approach to systematically identify the variations of the Psp system in ~450 completed actinobacterial genomes. We first determined the homologs of PspA and its cognate partners (as reported in Escherichia coli, Bacillus subtilis, and Mycobacterium tuberculosis) across Actinobacteria. This survey revealed that PspA and most of its functional partners are prevalent in Actinobacteria. We then found that PspA occurs in four predominant genomic contexts within Actinobacteria, the primary context being the clgRpspAM system previously identified in Mycobacteria. We also constructed a phylogenetic tree of PspA homologs (including paralogs) to trace the conservation and evolution of PspA across Actinobacteria. The genomic context revealed that PspA shows changes in its gene-neighborhood. The presence of multiple PspA contexts or of other known Psp members in genomic neighborhoods that do not carry pspA suggests yet undiscovered functional implications in envelope stress response mechanisms.


Assuntos
Actinobacteria/genética , Proteínas de Bactérias/genética , Evolução Molecular , Proteínas de Choque Térmico/genética , Actinobacteria/classificação , Bases de Dados Genéticas , Variação Genética , Genoma Bacteriano , Proteínas de Membrana/genética , Modelos Genéticos , Filogenia
14.
Oncotarget ; 8(18): 29668-29678, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27213582

RESUMO

Breast cancer is the second leading cause of cancer deaths among women. Cannabinoid receptor 2 (CNR2 or CB2) is an integral part of the endocannabinoid system. Although CNR2 is highly expressed in the breast cancer tissues as well as breast cancer cell lines, its functional role in breast tumorigenesis is not well understood. We observed that estrogen receptor-α negative (ERα-) breast cancer cells highly express epidermal growth factor receptor (EGFR) as well as insulin-like growth factor-I receptor (IGF-IR). We also observed IGF-IR upregulation in ERα+ breast cancer cells. In addition, we found that higher CNR2 expression correlates with better recurrence free survival in ERα- and ERα+ breast cancer patients. Therefore, we analyzed the role of CNR2 specific agonist (JWH-015) on EGF and/or IGF-I-induced tumorigenic events in ERα- and ERα+ breast cancers. Our studies showed that CNR2 activation inhibited EGF and IGF-I-induced migration and invasion of ERα+ and ERα- breast cancer cells. At the molecular level, JWH-015 inhibited EGFR and IGF-IR activation and their downstream targets STAT3, AKT, ERK, NF-kB and matrix metalloproteinases (MMPs). In vivo studies showed that JWH-015 significantly reduced breast cancer growth in ERα+ and ERα- breast cancer mouse models. Furthermore, we found that the tumors derived from JWH-015-treated mice showed reduced activation of EGFR and IGF-IR and their downstream targets. In conclusion, we show that CNR2 activation suppresses breast cancer through novel mechanisms by inhibiting EGF/EGFR and IGF-I/IGF-IR signaling axes.


Assuntos
Neoplasias da Mama/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Expressão Gênica , Xenoenxertos , Humanos , Indóis/farmacologia , Camundongos , Prognóstico , Receptor CB2 de Canabinoide/agonistas , Transdução de Sinais/efeitos dos fármacos
15.
Nat Commun ; 7: 11062, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27029515

RESUMO

Accessory sigma factors, which reprogram RNA polymerase to transcribe specific gene sets, activate bacterial adaptive responses to noxious environments. Here we reconstruct the complete sigma factor regulatory network of the human pathogen Mycobacterium tuberculosis by an integrated approach. The approach combines identification of direct regulatory interactions between M. tuberculosis sigma factors in an E. coli model system, validation of selected links in M. tuberculosis, and extensive literature review. The resulting network comprises 41 direct interactions among all 13 sigma factors. Analysis of network topology reveals (i) a three-tiered hierarchy initiating at master regulators, (ii) high connectivity and (iii) distinct communities containing multiple sigma factors. These topological features are likely associated with multi-layer signal processing and specialized stress responses involving multiple sigma factors. Moreover, the identification of overrepresented network motifs, such as autoregulation and coregulation of sigma and anti-sigma factor pairs, provides structural information that is relevant for studies of network dynamics.


Assuntos
Proteínas de Bactérias/fisiologia , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Mycobacterium tuberculosis/genética , Fator sigma/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Mycobacterium tuberculosis/metabolismo , Fator sigma/genética , Fator sigma/metabolismo
16.
Mol Carcinog ; 55(12): 2063-2076, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26741322

RESUMO

JWH-015, a cannabinoid receptor 2 (CB2) agonist has tumor regressive property in various cancer types. However, the underlying mechanism by which it acts in lung cancer is still unknown. Tumor associated macrophage (TAM) intensity has positive correlation with tumor progression. Also, macrophages recruited at the tumor site promote tumor growth by enhancing epithelial to mesenchymal (EMT) progression. In this study, we analyzed the role of JWH-015 on EMT and macrophage infiltration by regulation of EGFR signaling. JWH-015 inhibited EMT in NSCLC cells A549 and also reversed the mesenchymal nature of CALU-1 cells by downregulation of EGFR signaling targets like ERK and STAT3. Also, in vitro co-culture experiments of A549 with M2 polarized macrophages provided evidence that JWH-015 decreased migratory and invasive abilities which was proved by reduced expression of FAK, VCAM1, and MMP2. Furthermore, it decreased macrophage induced EMT in A549 by attenuating the mesenchymal character by downregulating EGFR and its targets. These results were confirmed in an in vivo subcutaneous syngenic mouse model where JWH-015 blocks tumor growth and also inhibits macrophage recruitment and EMT at the tumor site which was regulated by EGFR pathway. Finally, JWH-015 reduced lung tumor lesions in an in vivo tumorigenicity mouse model. These data confer the impact of this cannabinoid on anti-proliferative and anti-tumorigenic effects, thus enhancing our understanding of its therapeutic efficacy in NSCLC. Our findings open new avenues for cannabinoid receptor CB2 agonist-JWH-015 as a novel and potential therapeutic target based on EGFR downregulation mechanisms in NSCLC. © 2016 Wiley Periodicals, Inc.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores ErbB/metabolismo , Indóis/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Pulmão/efeitos dos fármacos , Receptor CB2 de Canabinoide/agonistas , Células A549 , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação para Baixo/efeitos dos fármacos , Humanos , Indóis/farmacologia , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Transdução de Sinais/efeitos dos fármacos
17.
Mol Microbiol ; 97(3): 408-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25899163

RESUMO

The bacterial envelope integrates essential stress-sensing and adaptive functions; thus, envelope-preserving functions are important for survival. In Gram-negative bacteria, envelope integrity during stress is maintained by the multi-gene Psp response. Mycobacterium tuberculosis was thought to lack the Psp system since it encodes only pspA and no other psp ortholog. Intriguingly, pspA maps downstream from clgR, which encodes a transcription factor regulated by the MprAB-σ(E) envelope-stress-signaling system. clgR inactivation lowered ATP concentration during stress and protonophore treatment-induced clgR-pspA expression, suggesting that these genes express Psp-like functions. We identified a four-gene set - clgR, pspA (rv2744c), rv2743c, rv2742c - that is regulated by clgR and in turn regulates ClgR activity. Regulatory and protein-protein interactions within the set and a requirement of the four genes for functions associated with envelope integrity and surface-stress tolerance indicate that a Psp-like system has evolved in mycobacteria. Among Actinobacteria, the four-gene module occurred only in tuberculous mycobacteria and was required for intramacrophage growth, suggesting links between its function and mycobacterial virulence. Additionally, the four-gene module was required for MprAB-σ(E) stress-signaling activity. The positive feedback between envelope-stress-sensing and envelope-preserving functions allows sustained responses to multiple, envelope-perturbing signals during chronic infection, making the system uniquely suited to tuberculosis pathogenesis.


Assuntos
Parede Celular/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/fisiologia , Estresse Fisiológico , Mycobacterium tuberculosis/genética , Óperon
18.
Mol Oncol ; 9(4): 906-19, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25660577

RESUMO

The anti-tumor role and mechanisms of Cannabidiol (CBD), a non-psychotropic cannabinoid compound, are not well studied especially in triple-negative breast cancer (TNBC). In the present study, we analyzed CBD's anti-tumorigenic activity against highly aggressive breast cancer cell lines including TNBC subtype. We show here -for the first time-that CBD significantly inhibits epidermal growth factor (EGF)-induced proliferation and chemotaxis of breast cancer cells. Further studies revealed that CBD inhibits EGF-induced activation of EGFR, ERK, AKT and NF-kB signaling pathways as well as MMP2 and MMP9 secretion. In addition, we demonstrated that CBD inhibits tumor growth and metastasis in different mouse model systems. Analysis of molecular mechanisms revealed that CBD significantly inhibits the recruitment of tumor-associated macrophages in primary tumor stroma and secondary lung metastases. Similarly, our in vitro studies showed a significant reduction in the number of migrated RAW 264.7 cells towards the conditioned medium of CBD-treated cancer cells. The conditioned medium of CBD-treated cancer cells also showed lower levels of GM-CSF and CCL3 cytokines which are important for macrophage recruitment and activation. In summary, our study shows -for the first time-that CBD inhibits breast cancer growth and metastasis through novel mechanisms by inhibiting EGF/EGFR signaling and modulating the tumor microenvironment. These results also indicate that CBD can be used as a novel therapeutic option to inhibit growth and metastasis of highly aggressive breast cancer subtypes including TNBC, which currently have limited therapeutic options and are associated with poor prognosis and low survival rates.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Canabidiol/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Modelos Biológicos , Invasividade Neoplásica , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
19.
Cancer Res ; 75(6): 974-85, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25572331

RESUMO

RAGE is a multifunctional receptor implicated in diverse processes including inflammation and cancer. In this study, we report that RAGE expression is upregulated widely in aggressive triple-negative breast cancer (TNBC) cells, both in primary tumors and in lymph node metastases. In evaluating the functional contributions of RAGE in breast cancer, we found that RAGE-deficient mice displayed a reduced propensity for breast tumor growth. In an established model of lung metastasis, systemic blockade by injection of a RAGE neutralizing antibody inhibited metastasis development. Mechanistic investigations revealed that RAGE bound to the proinflammatory ligand S100A7 and mediated its ability to activate ERK, NF-κB, and cell migration. In an S100A7 transgenic mouse model of breast cancer (mS100a7a15 mice), administration of either RAGE neutralizing antibody or soluble RAGE was sufficient to inhibit tumor progression and metastasis. In this model, we found that RAGE/S100A7 conditioned the tumor microenvironment by driving the recruitment of MMP9-positive tumor-associated macrophages. Overall, our results highlight RAGE as a candidate biomarker for TNBCs, and they reveal a functional role for RAGE/S100A7 signaling in linking inflammation to aggressive breast cancer development.


Assuntos
Neoplasias da Mama/patologia , Receptores Imunológicos/fisiologia , Proteínas S100/fisiologia , Microambiente Tumoral , Animais , Células Cultivadas , Progressão da Doença , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Prognóstico , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/antagonistas & inibidores , Proteína A7 Ligante de Cálcio S100
20.
Oncotarget ; 5(15): 5852-72, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25115386

RESUMO

The pharmacological importance of cannabinoids has been in study for several years. Cannabinoids comprise of (a) the active compounds of the Cannabis sativa plant, (b) endogenous as well as (c) synthetic cannabinoids. Though cannabinoids are clinically used for anti-palliative effects, recent studies open a promising possibility as anti-cancer agents. They have been shown to possess anti-proliferative and anti-angiogenic effects in vitro as well as in vivo in different cancer models. Cannabinoids regulate key cell signaling pathways that are involved in cell survival, invasion, angiogenesis, metastasis, etc. There is more focus on CB1 and CB2, the two cannabinoid receptors which are activated by most of the cannabinoids. In this review article, we will focus on a broad range of cannabinoids, their receptor dependent and receptor independent functional roles against various cancer types with respect to growth, metastasis, energy metabolism, immune environment, stemness and future perspectives in exploring new possible therapeutic opportunities.


Assuntos
Canabinoides/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...