Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 128: 94-108, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28314136

RESUMO

Intravascular administration of plasminogen activators is a clinically important thrombolytic strategy to treat occlusive vascular conditions. A major issue with this strategy is the systemic off-target drug action, which affects hemostatic capabilities and causes substantial hemorrhagic risks. This issue can be potentially resolved by designing technologies that allow thrombus-targeted delivery and site-specific action of thrombolytic drugs. To this end, leveraging a liposomal platform, we have developed platelet microparticle (PMP)-inspired nanovesicles (PMINs), that can protect encapsulated thrombolytic drugs in circulation to prevent off-target uptake and action, anchor actively onto thrombus via PMP-relevant molecular mechanisms and allow drug release via thrombus-relevant enzymatic trigger. Specifically, the PMINs can anchor onto thrombus via heteromultivalent ligand-mediated binding to active platelet integrin GPIIb-IIIa and P-selectin, and release the thrombolytic payload due to vesicle destabilization triggered by clot-relevant enzyme phospholipase-A2. Here we report on the evaluation of clot-targeting efficacy, lipase-triggered drug release and resultant thrombolytic capability of the PMINs in vitro, and subsequently demonstrate that intravenous delivery of thrombolytic-loaded PMINs can render targeted fibrinolysis without affecting systemic hemostasis, in vivo, in a carotid artery thrombosis model in mice. Our studies establish significant promise of the PMIN technology for safe and site-targeted nanomedicine therapies in the vascular compartment.


Assuntos
Plaquetas/citologia , Micropartículas Derivadas de Células/metabolismo , Fibrinólise , Nanomedicina/métodos , Trombose/terapia , Animais , Fibrinólise/efeitos dos fármacos , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Microscopia Intravital , Lipase/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Peptídeos/metabolismo , Fosfolipases A2/metabolismo , Solubilidade , Trombose/tratamento farmacológico , Trombose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...