Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6698): eadh1938, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781370

RESUMO

The molecular organization of the human neocortex historically has been studied in the context of its histological layers. However, emerging spatial transcriptomic technologies have enabled unbiased identification of transcriptionally defined spatial domains that move beyond classic cytoarchitecture. We used the Visium spatial gene expression platform to generate a data-driven molecular neuroanatomical atlas across the anterior-posterior axis of the human dorsolateral prefrontal cortex. Integration with paired single-nucleus RNA-sequencing data revealed distinct cell type compositions and cell-cell interactions across spatial domains. Using PsychENCODE and publicly available data, we mapped the enrichment of cell types and genes associated with neuropsychiatric disorders to discrete spatial domains.


Assuntos
Análise de Célula Única , Transcriptoma , Humanos , Córtex Pré-Frontal Dorsolateral/metabolismo , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Masculino , Feminino , Comunicação Celular , RNA-Seq , Perfilação da Expressão Gênica , Neurônios/metabolismo , Neurônios/fisiologia , Adulto , Análise de Sequência de RNA
2.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328080

RESUMO

Background: Gene co-expression networks (GCNs) describe relationships among expressed genes key to maintaining cellular identity and homeostasis. However, the small sample size of typical RNA-seq experiments which is several orders of magnitude fewer than the number of genes is too low to infer GCNs reliably. recount3, a publicly available dataset comprised of 316,443 uniformly processed human RNA-seq samples, provides an opportunity to improve power for accurate network reconstruction and obtain biological insight from the resulting networks. Results: We compared alternate aggregation strategies to identify an optimal workflow for GCN inference by data aggregation and inferred three consensus networks: a universal network, a non-cancer network, and a cancer network in addition to 27 tissue context-specific networks. Central network genes from our consensus networks were enriched for evolutionarily constrained genes and ubiquitous biological pathways, whereas central context-specific network genes included tissue-specific transcription factors and factorization based on the hubs led to clustering of related tissue contexts. We discovered that annotations corresponding to context-specific networks inferred from aggregated data were enriched for trait heritability beyond known functional genomic annotations and were significantly more enriched when we aggregated over a larger number of samples. Conclusion: This study outlines best practices for network GCN inference and evaluation by data aggregation. We recommend estimating and regressing confounders in each data set before aggregation and prioritizing large sample size studies for GCN reconstruction. Increased statistical power in inferring context-specific networks enabled the derivation of variant annotations that were enriched for concordant trait heritability independent of functional genomic annotations that are context-agnostic. While we observed strictly increasing held-out log-likelihood with data aggregation, we noted diminishing marginal improvements. Future directions aimed at alternate methods for estimating confounders and integrating orthogonal information from modalities such as Hi-C and ChIP-seq can further improve GCN inference.

3.
bioRxiv ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36824961

RESUMO

Generation of a molecular neuroanatomical map of the human prefrontal cortex reveals novel spatial domains and cell-cell interactions relevant for psychiatric disease. The molecular organization of the human neocortex has been historically studied in the context of its histological layers. However, emerging spatial transcriptomic technologies have enabled unbiased identification of transcriptionally-defined spatial domains that move beyond classic cytoarchitecture. Here we used the Visium spatial gene expression platform to generate a data-driven molecular neuroanatomical atlas across the anterior-posterior axis of the human dorsolateral prefrontal cortex (DLPFC). Integration with paired single nucleus RNA-sequencing data revealed distinct cell type compositions and cell-cell interactions across spatial domains. Using PsychENCODE and publicly available data, we map the enrichment of cell types and genes associated with neuropsychiatric disorders to discrete spatial domains. Finally, we provide resources for the scientific community to explore these integrated spatial and single cell datasets at research.libd.org/spatialDLPFC/.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...