Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ayurveda Integr Med ; 14(1): 100658, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36400639

RESUMO

Ayurveda is a centuries old traditional medicine practiced in India even today. There are certain safe medicinal plants with well-established medicinal properties both in clinical practice as well as in modern scientific publications. Guduchi or Tinospora cordifolia (Willd.) Miers (Menispermaceae), is one such medicinal plant that has well known anti-inflammatory, immune-modulatory and other safe therapeutic applications including hepato-protection, because of which it was recommended by the Ministry of AYUSH, Government of India to be used in COVID-19 care. Therefore, Aabha Nagral's article "Herbal Immune Booster-Induced Liver Injury in the COVID-19 Pandemic-a Case Series," published in 2021, was unanticipated. The article recounted histologically documented clinical cases of six patients who developed drug-induced autoimmune-like hepatitis after reported consumption of Guduchi or Guduchi containing formulations during the COVID-19 pandemic. Since the Ayurveda practitioners vouch by the safety of T. cordifolia (TC), it was felt that the story needed to be further scrutinized. This article reviews the botanical entities, the substitutes and adulterants of species used as Guduchi, their pharmacological and toxicological properties. While the authentic botanical entity of Guduchi is TC, Tinospora sinensis and Tinospora crispa are also commonly traded in the Indian subcontinent as Guduchi or Giloy. Among these species, T. crispa is known to induce heapto-toxicity. In Nagral's article, there were variations in the reported six cases in terms of patient history and TC/TC product consumption. More importantly, the botanical authenticity of the consumed products was not investigated. A review of published literature indicates that it is unlikely that the authentic TC could have induced autoimmune-like hepatitis of the patients. It is probable that a wrong species was self-administered by the patients. It is worth following up with the cases (patients), to investigate details of the products, so that other consumers do not suffer. Nagral's article however does highlight the serious issue of adulteration in herbal markets and the need for establishing a robust pharmacovigilant system in India.

2.
J Biosci ; 462021.
Artigo em Inglês | MEDLINE | ID: mdl-34047287

RESUMO

Decalepis salicifolia (Bedd. ex Hook. f.) Venter is a potential medicinal and highly aromatic plant species confined to the southernmost part of the Western Ghats of India. The plant is well known for its traditional uses among the various tribal communities of south India. The tubers of the plant possess characteristic vanillin-like aroma due to the presence of the compound 2-hydroxy-4-methoxybenzaldehyde. The tubers are used to substitute Hemidesmus indicus in various herbal formulations. The plants in the wild are continuously uprooted for their roots, leading to the irreversible destruction of the whole plant. The resulting tremendous loss of populations in the wild led to the species being declared as critically endangered by IUCN. Our group is working on the various aspects of this species including population status, distribution mapping, prospection, and conservation management. In the present review, we have brought out the available information till date on D. salicifolia, including taxonomy, ethno-medicinal uses, phytochemistry, pharmacology, population status, and conservation efforts along with research gap and lacunae to provide direction for further research into this less explored medicinal and aromatic plant.


Assuntos
Apocynaceae/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção/estatística & dados numéricos , Filogenia , Tubérculos/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Apocynaceae/química , Apocynaceae/classificação , Apocynaceae/genética , Benzaldeídos/análise , Variação Genética , Humanos , Índia , Odorantes/análise , Compostos Fitoquímicos/análise , Dispersão Vegetal/fisiologia , Tubérculos/fisiologia , Plantas Medicinais , Terminologia como Assunto
3.
Fitoterapia ; 152: 104920, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33984435

RESUMO

The resin of Canarium strictum Roxb. is used for rheumatism and asthma; the bark is used as a mosquito repellent. The major compounds in the resin are triterpenoids, but as no studies have been performed on the bark, this study investigated this economically important resource. Ten folk healers were interviewed about their medicinal uses of C. strictum. Resin and bark were extracted with dichloromethane followed by methanol using accelerated solvent extraction. The extracts were fractionated using different chromatographic methods, and isolated compounds were identified by NMR spectroscopy and GC-MS. Resin and bark extracts were investigated for DPPH radical scavenging, 15-lipoxygenase inhibition, effects on nitric oxide (NO) production in LPS-activated dendritic D2SC/I cells and toxicity against Artemia salina nauplii. Traditional healers used resin to treat colds, airway afflictions and rheumatoid arthritis. α-Amyrin and ß-amyrin were identified as the major constituents in the dichloromethane resin extract. From the stem bark, procyanidins, gallic acid, methyl gallate, scopoletin, 3,3'-di-O-methylellagic acid 4-O-α-arabinofuranoside and elephantorrhizol (3,3',4',5,6,7,8-heptahydroxyflavan) were isolated and identified. By GC-MS, α-amyrin and ß-amyrin and their acetates, lupeol, and taraxasterol were identified. Radical scavenging, 15-lipoxygenase inhibitory activity and inhibition of NO production was observed from resin and bark extracts, and no toxicity towards Artemia salina nauplii was found. Triterpenoids and procyanidins are the major compounds in C. strictum resin and stem bark, respectively. The high content of triterpenoids might contribute to anti-inflammatory effects and give a rationale for the widespread usage of the resin in India.


Assuntos
Burseraceae/química , Casca de Planta/química , Resinas Vegetais/química , Triterpenos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Linhagem Celular , Etnofarmacologia , Flavonoides , Índia , Inibidores de Lipoxigenase/isolamento & purificação , Inibidores de Lipoxigenase/farmacologia , Camundongos , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Plantas Medicinais/química , Esteróis , Árvores/química , Triterpenos/isolamento & purificação
4.
J Ethnopharmacol ; 221: 56-64, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29635015

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: More than 15,000 angiosperm species are dioecious, i.e., having distinct male and female individual plants. The allocation of resources between male and female plants is different, and also variation in secondary metabolites and sex-biased herbivory is reported among dioecious plants. However, little is known about the ethnobotany of dioecious species and whether preferences exist for a specific gender, e.g., in food, medicine or timber. AIM OF THE STUDY: The aim of this study was: 1) to study whether Indian folk healers have preference for plant genders, and to document their knowledge and use of dioecious species; 2) to understand the concept of plant gender in Indian systems of medicine and folk medicine, and whether Ayurvedic literature includes any references to gender preference. MATERIALS AND METHODS: Lists of dioecious plants used in Indian systems of medicine and folk medicine were compiled. Ethnobotanical data was collected on perceptions and awareness of dioecious plants, and preferences of use for specific genders of dioecious species using semi-structured interviews with folk healers in Tamil Nadu, India. In addition, twenty Ayurvedic doctors were interviewed to gain insight into the concept of plant gender in Ayurveda. RESULTS: Indian systems of medicine contain 5-7% dioecious species, and this estimate is congruent with the number of dioecious species in flowering plants in general. Informants recognized the phenomenon of dioecy in 31 out of 40 species, and reported gender preferences for 13 species with respect to uses as timber, food and medicine. Among informants different plant traits such as plant size, fruit size, and visibility of fruits determines the perception of a plant being a male or female. Ayurvedic classical literature provides no straightforward evidence on gender preferences in preparation of medicines or treatment of illness, however it contains details about reproductive morphology and sexual differentiation of plants. CONCLUSIONS: A knowledge gap exists in ethnobotanical and ethnopharmacological literature on traditional knowledge of dioecious plants. From this explorative study it is evident that people have traditional knowledge on plant gender and preferential usages towards one gender. Based on this, we propose that researchers conducting ethnobotanical and ethnopharmacological studies should consider documenting traditional knowledge on sexual systems of plants, and test the existence of gender specific usages in their conceptual framework and hypothesis testing. Incorporating such concepts could provide new dimensions of scientific knowledge with potential implications to conservation biology, chemical ecology, ethnoecology and drug discovery.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Plantas Medicinais , Adulto , Idoso , Idoso de 80 Anos ou mais , Etnobotânica , Feminino , Humanos , Índia , Masculino , Medicina Tradicional , Pessoa de Meia-Idade , Inquéritos e Questionários
5.
J Ayurveda Integr Med ; 9(2): 104-112, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29225002

RESUMO

BACKGROUND: The Valaiyar (Moopanar) communities of Tamil Nadu are traditionally known for catching rats and snakes from the agricultural fields. Prior to independence, some of these families have faced socio-economic changes and chosen to become herbalists in Madurai city. They are mainly engaged in collecting and dispensing fresh and dried plant drugs in its 'natural form' at Tilagar tidal market of Madurai city. Their business is unique, because customers receive 'prescriptions' and 'plant drugs', unlike the conventional dispensaries. Their world view is: 'to cure the ailing in natural way'. OBJECTIVES: To document plant drugs collected and dispensed by some of the families belonging to Valaiyar (Moopanar) community in the Tilagar tidal market. MATERIALS AND METHODS: Ethnobotanical tools were employed to document various aspects of the practices including resource and knowledge base, medicinal uses, dosage, collection of herbarium and raw drug specimens. Integrative approach was adapted to document the trade dynamics. RESULTS: During the study, 133 medicinal plant species belonging to 50 families were documented. 71% of species were sourced from wild and non-forest areas. 272 simple and compound remedies were recorded. CONCLUSION: Local markets/shanties like these are 'Traditional Medicine (TM) health care services at door step'. They cater to local health care needs along with conventional system in a synergistic manner and provide adaptable, local solutions using local resources.

6.
Appl Biochem Biotechnol ; 176(5): 1413-30, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25969156

RESUMO

Decalepis arayalpathra, a critically endangered plant species, has a restricted and fragmented population in Southern Western Ghats, India. This study is a first attempt to evaluate genetic diversity and population structure in the nine wild populations of D. arayalpathra based on molecular pattern realized through the marker assays. Principal coordinate analysis (PCoA) and Nei's unweighted pair-group method with arithmetic average (UPGMA)-based hierarchical clustering of both the marker assays suggest strong genetic clustering between the individuals corresponding to their geographical ranges. Mantel test also corroborates a close genetic proximity between genetic and geographic data (r = 0.389). Population genetic analysis revealed low levels of gene flow [inter-simple sequence repeat (ISSR) = 0.289 and random amplified polymorphic DNA (RAPD) = 0.847] between the populations, in line with high genetic differentiation (Gst = 0.531 with ISSR and 0.440 with RAPD), which was also supported by analysis of molecular variance (AMOVA), that 54 % (ISSR) and 64 % (RAPD) total variation resided within populations. Bayesian model-based STRUCTURE analysis detected three genetic clusters showing the high degree of admixture within population. Based on the findings, such as inbreeding depression and the loss of genetic diversity, suggestions for conservation strategies are provided to preserve the genetic resources of this endangered species.


Assuntos
Apocynaceae/crescimento & desenvolvimento , Apocynaceae/genética , Teorema de Bayes , Genética Populacional , Geografia , Índia , Repetições de Microssatélites , Polimorfismo Genético , Dinâmica Populacional , Análise de Componente Principal , Técnica de Amplificação ao Acaso de DNA Polimórfico
7.
Fitoterapia ; 81(6): 503-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20083169

RESUMO

Tribulus terrestris L. (Zygophyllaceae) is one of the highly traded raw drugs and also used as a stimulative food additive in Europe and USA. While, Ayurvedic Pharmacopoeia of India recognizes T. terrestris as Goksura, Tribulus lanuginosus and T. subramanyamii are also traded by the same name raising issues of quality control. The nuclear ribosomal RNA genes and ITS (internal transcribed spacer) sequence were used to develop species-specific DNA markers. The species-specific markers efficiently amplified 295bp for T. terrestris (TT1F and TT1R), 300bp for T. lanuginosus (TL1F and TL1R) and 214bp for T. subramanyamii (TS1F and TS1R). These DNA markers can be used to distinguish T. terrestris from its adulterants.


Assuntos
DNA Espaçador Ribossômico/química , Plantas Medicinais/química , Tribulus/química , Sequência de Bases , DNA de Plantas/química , Contaminação de Medicamentos , Dados de Sequência Molecular , Preparações de Plantas/normas , Plantas Medicinais/genética , Especificidade da Espécie , Tribulus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...