Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Struct ; 1285: 135461, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37041803

RESUMO

The respiratory infection tuberculosis is caused by the bacteria Mycobacterium tuberculosis and its unrelenting spread caused millions of deaths around the world. Hence, it is needed to explore potential and less toxic anti-tubercular drugs. In the present work, we report the synthesis and antitubercular activity of four different (hydrazones 7-12, O-ethynyl oximes 19-24, triazoles 25-30, and isoxazoles 31-36) hybrids. Among these hybrids 9, 10, 33, and 34, displayed high antitubercular activity at 3.12 g/mL with >90% of inhibitions. The hybrids also showed good docking energies between -6.8 and -7.8 kcal/mol. Further, most active molecules were assayed for their DNA gyrase reduction ability towards M. tuberculosis and E.coli DNA gyrase by the DNA supercoiling and ATPase gyrase assay methods. All four hybrids showed good IC50 values comparable to that of the reference drug. In addition, the targets were also predicted as a potential binder for papain-like protease (SARS CoV-2 PLpro) by molecular docking and a good interaction result was observed. Besides, all targets were predicted for their absorption, distribution, metabolism, and excretion - toxicity (ADMET) profile and found a significant amount of ADMET and bioavailability.

2.
Front Nutr ; 10: 1137247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020812

RESUMO

Introduction: Developing an intensive sustainable model and feeding a rising population are worldwide challenges. The task is much more daunting in the North Eastern Himalayas, where, low productive maize (Zea mays)- fallow is the main production system in the upland. To increase farm productivity, nutritional security, and energy dietary returns while maintaining environmental sustainability and economic viability, short-duration crops must be included in the maize-fallow system. Methods: A field study was conducted in sandy clay loam soil with a randomized complete block design with three replications for three continuous years (2018-2021) under organic management with two crop management practices, viz., (i) conservation agriculture and (ii) conventional agriculture, and six crop diversification options, viz., (i) maize-sweet corn (Zea mays saccharata)-vegetable pea (Pisum sativa) (M-SC-VP), (ii) maize-sweet corn-mustard (Brassica juncea) (M-SC-M), (iii) maize-sweet corn-lentil (Lens culinaris) (M-SC-L), (iv) maize-sweet corn-vegetable broad bean (Vicia faba) (M-SC-VB), (v) maize (local)-vegetable pea (M-VP), and (vi) maize (local)-fallow (M-F). Results: The results showed that, the average system productivity was 5.3% lower for conventional agriculture than conservation agriculture. System carbohydrate, protein, fat, dietary fiber, and dietary energy were ~6.9, 6.8, 7.8, 6.7, and 7%, higher in conservation agriculture than in conventional agriculture, respectively. Similarly, system macronutrients (Ca, Mg, P, and K) and system micronutrients yield (Fe, Mn, Zn, and Cu) were, 5.2-8% and 6.9-7.4% higher in conservation agriculture than in conventional agriculture, respectively. On average, over the years, crop diversification with M-SC-VP/M-SC-VB intensive crop rotation had higher system productivity (158%), production efficiency (157%), net returns (benefit-cost ratio) (44%), and dietary net energy returns (16.6%) than the local maize-vegetable pea system. Similarly, the M-SC-VP/M-SC-VB system improved the nutritional security by improving Ca, Mg, P, K, Fe, Mn, Zn, and Cu yield by 35.5-135.7% than the local M-VP system. Discussion: Conservation agriculture with M-SC-VP/M-SC-VB rotation showed significantly (p < 0.05) higher productivity, carbohydrate yield, protein yield, fat yield, and dietary fiber production. It is concluded that conservation agriculture improved soil health and performed better than conventional agriculture in maize-based intensive cropping systems. Overall results indicate that crop diversification with M-SC-VP/M-SC-VB can potentially increase calorie and protein consumption and farm profitability.

3.
Sci Rep ; 12(1): 333, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013415

RESUMO

Adoption of an integrated farming system (IFS) is essential to achieve food and nutritional security in small and marginal holdings. Assessment of IFS to know the resource availability and socio-economic condition of the farm household, farm typology plays a critical role. In this regard, a sample survey of 200 marginal households practicing mixed crop-livestock agriculture was conducted during 2018-2019 at Southern Coastal Plains, which occupies 19,344 ha in Thiruvananthapuram district, Kerala, India. Farming system typology using multivariate statistical techniques of principal component analysis and cluster analysis characterized the diverse farm households coexisting within distinct homogenous farm types. Farming system typology identified four distinct farm types viz. resource constrained type-1 households with small land owned, high abundance of poultry, very low on-farm income, constituted 46.5%; resource endowed type-2 households oriented around fruit and vegetable, plantation crop, with a moderate abundance of large ruminant and poultry, high on-farm income, constituted 12.5%; resource endowed type-3 household oriented around food grain, extensive use of farm machinery, with a moderate abundance of large ruminant, low on-farm income, constituted 21.5%; and resource endowed type-4 household oriented around fodder, with high abundance of large ruminant, medium on-farm income, constituted 19.5% of sampled households. Constraint analysis using constraint severity index assessed the severity of constraints in food grain, horticulture, livestock, complementary and supplementary enterprises in each farm type, which allowed targeted farming systems interventions to be envisaged to overcome soil health problems, crops and animal production constraints. Farming system typology together with constraint analysis are therefore suggested as a practical framework capable of identifying type-specific farm households for targeted farming systems interventions.

4.
Sci Rep ; 11(1): 20978, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697331

RESUMO

Due to complexity of smallholder farms, many times technologies with great potential fail to achieve the desired impact in leveraging productivity and profitability of the farming community. In the Indo-Gangetic Plains there is an urgent need to understand the diversity of farm households, identifying the main drivers deciding their system thus, classifying them into homogenous groups. In the present study, the diversity of smallholder farms was assessed using crop, livestock and income related characteristics and associated farm mechanization. Using principal component analysis and cluster analysis for 252 farm households, 4 farm types were identified i.e. Type 1. Small Farm households with cereal-based cropping system and subsistence livestock (39%), Type 2. Small Farm households with diversified cropping system dominated by cereal and fodder crops with only cattle herd (9%), Type 3. Marginal Farm household with diversified cropping system dominated by cash crop and herd comprising of only cattle (39%), Type 4. Marginal Farm household with diversified cropping system dominated by cereal crops and herd dominated by small ruminants (12%). Based on the constraints identified for different components of farming systems, low-cost interventions were planned for each farm type. These interventions have resulted in 84.8-103.2 per cent increase in the income of the farm HH under study suggesting usefulness of typology-based intervention planning in increasing income of small farm holders.

5.
Sci Total Environ ; 684: 682-693, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31163333

RESUMO

Majority of organic matter is bound to clay minerals to form stable colloidal organo-mineral fraction (COMF) in soil. Stability of carbon (C) in COMF is crucial for long-term C sequestration in soil. However, information on the effect of long-term fertilization and manuring with various organic sources on C stability in such fraction in soils with varying clay mineralogy is scarce. The present study was, therefore, carried out to assess the effect of thirty-one years of continuous fertilization and manuring with different organics on C-stability in COMF extracted from an Inceptisol, a Vertisol, a Mollisol, and an Alfisol. The treatments comprised of control (no fertilization), 100% NPK (100% of recommended N, P and K through fertilizer), 50% NPK+ 50% of recommended N supplied through either farm yard manure (FYM) or cereal residue (CR) or green manure (GM). The stability of C (1/k) in COMF was determined from desorption rate constant (k) of humus-C by sequential extraction and correlated with extractable amorphous Fe-Al-Si-oxides, and crystallite size of illite minerals. Long-term fertilization and manuring with the above sources of organic altered the contents of amorphous Fe-Al-Si-oxides, and decreased the crystallite size of illite in all the soil orders. Fifty percent substitution of fertilizer N by various organics significantly increased C-stability in COMF by 27-221% (mean 111%) over full dose of NPK (100% NPK). Smectite dominating Vertisol exhibited highest stability of C followed by the Mollisol, the Inceptisol and the Alfisol. Stability of such C in soil was correlated positively with the amount of amorphous Fe and Al oxides but negatively with crystallite size of illite (r = -0.46, P < 0.01). Application of NPK + GM or NPK + FYM in Inceptisol, Vertisol and Mollisol and NPK + GM or NPK + CR in Alfisol emerged as the best management practices for higher stabilization of C in COMF for long-term C sequestration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...