Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(7): 7271-7276, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405522

RESUMO

Technological advancements in organic chemistry cannot be imagined without solvents, an essential evil due to well-recognized safety, health, and environmental risks and yet an integral part of the value chain for almost all industrially manufactured products intended for human use. A solvent serves as an essential liquid medium for different molecules to interact and react, generating products totally different from the original reactants. Reminiscences reveal water to be the first solvent used in the art of organic chemistry. This Viewpoint attempts to capture anecdotal theories and evidence on the use of this "magic liquid" and the progressive adoption of alternative liquid solvents, which have played a pivotal role in the evolution of synthetic organic chemistry. Synthetic organic chemistry, in turn, has sought to compete with nature in mimicking complex natural product syntheses in the laboratory on miniscule time scales compared with millions of years of evolutionary processes.

2.
Environ Sci Pollut Res Int ; 31(6): 8719-8735, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182948

RESUMO

Hexavalent chromium oxyanions, known as potentially toxic micropollutants, exist in the effluents and discharges of metallurgical, electroplating, refractory, chemical, and tanning industries. The exposure of chromium-contaminated water causes severe health hazards. The present work outlines a facile approach to grow polyaniline (PANI) on fruit-waste-derived cellulose (CEL) via oxidative polymerization of aniline; followed by chemical processing with NH4OH to obtain CEL-PANI-EB composites for adsorptive separation-coupled reduction of highly toxic hexavalent chromium oxyanions. The spectroscopic analyses of the CEL-PANI-EB composite before and after adsorption of Cr(VI) oxyanions revealed hydrogen bonding, electrostatic, and complexation as major interactive pathways. The adsorbed hexavalent chromium oxyanions are reduced into Cr(III) species by oxidation of PANI-based benzenoid amine into quinoid imine in the CEL-PANI-EB composite. The adsorption of Cr(VI) oxyanions by the CEL-PANI-EB composite showed negligible effects of other anionic co-pollutants, like NO3- and SO42-. The CEL-PANI-EB composite adsorbed Cr(VI) oxyanions with a removal capacity of 469 mg g-1, based on the Langmuir adsorption isotherm model. The hydroxyl functionalities in cellulose and amine/imine functionalities in PANI facilitate the electrostatic attraction between the CEL-PANI-EB and Cr(VI) oxyanions in an acidic environment beside the hydrogen linkages. The adsorbed Cr(VI) oxyanions are reduced to Cr(III)-based species by the benzenoid amines of PANI, as revealed from the XPS analyses. The CEL-PANI-EB composite showed excellent recyclability and maintained 83.4% adsorption efficiency after seven runs of chromium adsorption-desorption. The current findings reveal the potential of CEL-PANI-EB composites for the adsorptive removal of Cr(VI) oxyanions and their conversion into a lesser toxic form, making them promising materials for wastewater treatment applications.


Assuntos
Celulose , Poluentes Químicos da Água , Celulose/química , Frutas/química , Adsorção , Poluentes Químicos da Água/análise , Cromo/química , Compostos de Anilina/química , Iminas , Cinética , Concentração de Íons de Hidrogênio
3.
Biodegradation ; 35(3): 299-313, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37792261

RESUMO

The anthropogenic activities toward meeting the energy requirements have resulted in an alarming rise in environmental pollution levels. Among pollutants, polycyclic aromatic hydrocarbons (PAHs) are the most predominant due to their persistent and toxic nature. Amidst the several pollutants depuration methods, bioremediation utilizing biodegradation is the most viable alternative. This study investigated the biodegradation efficacy using developed microbial consortium PBR-21 for 2-4 ringed PAHs named naphthalene (NAP), anthracene (ANT), fluorene (FLU), and pyrene (PYR). The removal efficiency was observed up to 100 ± 0.0%, 70.26 ± 4.2%, 64.23 ± 2.3%, and 61.50 ± 2.6%, respectively, for initial concentrations of 400 mg L-1 for NAP, ANT, FLU, and PYR respectively. Degradation followed first-order kinetics with rate constants of 0.39 d-1, 0.10 d-1, 0.08 d-1, and 0.07 d-1 and half-life t 1 / 2  of 1.8 h, 7.2 h, 8.5 h, and 10 h, respectively. The microbial consortia were found to be efficient towards the co-contaminants with 1 mM concentration. Toxicity examination indicated that microbial-treated PAHs resulted in lesser toxicity in aquatic crustaceans (Artemia salina) than untreated PAHs. Also, the study suggests that indigenous microbial consortia PBR-21 has the potential to be used in the bioremediation of PAH-contaminated environment.


Assuntos
Antracenos , Poluentes Ambientais , Naftalenos , Hidrocarbonetos Policíclicos Aromáticos , Pirenos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Consórcios Microbianos , Fluorenos/toxicidade , Biodegradação Ambiental , Poluentes do Solo/metabolismo
4.
World J Microbiol Biotechnol ; 40(2): 44, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38114825

RESUMO

α-Amylases are essential biocatalysts representing a billion-dollar market with significant long-term global demand. They have varied applications ranging from detergent, textile, and food sectors such as bakery to, more recently, biofuel industries. Microbial α-amylases have distinct advantages over their plant and animal counterparts owing to generally good activities and better stability at temperature and pH extremes. With the scope of applications expanding, the need for new and improved α-amylases is ever-growing. However, scaling up microbial α-amylase technology from the laboratory to industry for practical applications is impeded by several issues, ranging from mass transfer limitations, low enzyme yields, and energy-intensive product recovery that adds to high production costs. This review highlights the major challenges and prospects for the production of microbial α-amylases, considering the various avenues of industrial bioprocessing such as culture-independent approaches, nutrient optimization, bioreactor operations with design improvements, and product down-streaming approaches towards developing efficient α-amylases with high activity and recyclability. Since the sequence and structure of the enzyme play a crucial role in modulating its functional properties, we have also tried to analyze the structural composition of microbial α-amylase as a guide to its thermodynamic properties to identify the areas that can be targeted for enhancing the catalytic activity and thermostability of the enzyme through varied immobilization or selective enzyme engineering approaches. Also, the utilization of inexpensive and renewable substrates for enzyme production to isolate α-amylases with non-conventional applications has been briefly discussed.


Assuntos
Amilases , alfa-Amilases , Animais , alfa-Amilases/química , Amilases/metabolismo , Temperatura , Estabilidade Enzimática
5.
Langmuir ; 39(48): 17295-17307, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37987736

RESUMO

The current study highlights the successful integration of an in silico design with experimental validation to create a highly effective corrosion inhibitor for copper (Cu) surfaces. The synthesized sulfonated zinc phthalocyanine (Zn-Pc) is electrochemically characterized and demonstrates an impressive 97% inhibition efficiency, comparable to the widely used industrial corrosion inhibitor, BTA, for Cu surfaces. The corrosion inhibition is comprehensively analyzed through potentiodynamic polarization and impedance spectroscopy techniques, supported by their respective equivalent circuits. Furthermore, the sample undergoes thorough characterization using scanning electron microscopy, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy, contact angle measurements, and atomic force microscopy. Density functional theory calculations reveal that sulfonated Zn-Pc exhibits the highest interaction energy, underscoring its exceptional inhibition properties. These results open possibilities for utilizing computational methods to design and optimize corrosion inhibitors for protection of Cu surfaces.

6.
Chem Commun (Camb) ; 59(94): 14036-14039, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37920990

RESUMO

Our recent Communication (S. R. Khan et al., Chem. Commun., 2022, 58, 2208) suggested that CO2 can be used as a potential oxidant under light irradiation without using any catalyst for the oxidation of aldehydes to acids at room temperature. The Comment based on the published literature on the catalytic oxidation of aromatic aldehydes by CO2 and thermodynamical data argued on the realism of the experimental data.

7.
Crit Rev Food Sci Nutr ; : 1-21, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37183680

RESUMO

The rise in fisheries production worldwide has caused a remarkable increase in associated anthropogenic waste. This poses significant concerns due to adverse environmental impacts and economic losses. Owing to its renewability, high abundance, and potential as a rich source of many nutrients and bioactive compounds, strategies have been developed to convert fish waste into different value-added products. Conventional and improved methods have been used for the extraction of biomolecules from fish waste. The extracted fish waste-derived value-added products such as enzymes, peptides, fish oil, etc. have been used to fortify different food products. This review aims to provide an overview of the nature and composition of fish waste, strategies for extracting biomolecules from fish waste, and the potential application of fish waste as a source of calcium and other nutrients in food fortification and animal feed has been discussed. In context to fishery waste mitigation, valorization, and circular bioeconomy approach are gaining momentum, aiming to eliminate waste while producing high-quality value-added food and feed products from fishery discards.

8.
Indian J Microbiol ; 63(1): 159, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37179579

RESUMO

[This corrects the article DOI: 10.1007/s12088-021-00928-4.].

10.
Environ Res ; 216(Pt 2): 114511, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265600

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in the ecosystem and are of significant concern due to their toxicity and mutagenicity. Bioremediation of PAHs is a popular and benign approach that ameliorates the environment. This study investigated the biodegradation and proteome response of Pseudomonas aeruginosa IIPIS-8 for two-ringed PAH: naphthalene (NAP) to understand proteome alteration during its bioremediation. Rapid biodegradation was observed up to 98 ± 1.26% and 84 ± 1.03%, respectively, for initial concentrations of 100 mg L-1 and 500 mg L-1 of NAP. Degradation followed first-order kinetics with rate constants of 0.12 h-1 and 0.06 h-1 and half-life (t1/2) of 5.7 h and 11.3 h, respectively. Additionally, the occurrence of key ring cleavage and linear chain intermediates, 2,3,4,5,6, -pentamethyl acetophenone, 1-octanol 2-butyl, and hexadecanoic acid supported complete NAP degradation. Proteomics study of IIPIS-8 throws light on the impact of protein expression, in which 415 proteins were quantified in sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) analysis, of which 97 were found to be significantly up-regulated and 75 were significantly down-regulated by ≥ 2-fold change (p values ≤ 0.05), during the NAP degradation. The study also listed the up-regulation of several enzymes, including oxido-reductases, hydrolases, and catalases, potentially involved in NAP degradation. Overall, differential protein expression, through proteomics study, demonstrated IIPIS-8's capability to efficiently assimilate NAP in their metabolic pathways even in a high concentration of NAP.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Pseudomonas aeruginosa , Proteômica , Proteoma , Ecossistema , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Naftalenos/toxicidade , Biodegradação Ambiental
12.
J Environ Manage ; 324: 116380, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36208515

RESUMO

Keratinase production by Bacillus cereus IIPK35 was investigated under solid-state fermentation (SSF) and the maximum titer of 648.28 U/gds was revealed. Feather hydrolysates obtained from SSF exhibited paramount antioxidant properties in ABTS [2,2'-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid], FRAP [Ferric ion reducing antioxidant power], and DPPH [2,2,-Diphenyl-1-picrylhydrazyl] assay. The keratinase was purified up to homogeneity have a molecular weight of 42 kDa, and showed its stability between pH 6.5-10.0 and temperature 35-60 °C with optimum enzyme activity at pH 9.0 and 55 °C. The catalytic indices viz. Km of 9.8 mg/ml and Vmax of 307.7 µmol/min for keratin were determined. Besides keratin, the enzyme displayed broad and proteolytic activity towards other proteinaceous substrates such as casein, skim milk, gelatin, and bovine serum albumin. Pure keratinase activity was stimulated in presence of Ca2+ and Mg2+ ions, while it was strongly inhibited by both iodoacetamide and EDTA, indicating it to be a metallo-serine protease in nature. Circular dichroism study endorses the structural stability of the secondary structure at the said range of pH and temperature. The IIPK35 keratinase is non-cytotoxic in nature, shows remarkable storage stability and is stable in presence of Tween 80, Triton X 100, and sodium sulfite. Furthermore, it showed excellent milk clotting potential (107.6 Soxhlet Unit), suggesting its usefulness as an alternative milk clotting agent in the dairy industry. This study unlocks a new gateway for keratinase investigation in SSF using chicken feathers as substrate and biochemical and biophysical characterization of keratinase for better understanding and implication in industrial applications.


Assuntos
Plumas , Queratinas , Animais , Bacillus cereus , Antioxidantes , Leite , Serina , Concentração de Íons de Hidrogênio , Peptídeo Hidrolases , Temperatura , Galinhas
13.
ACS Omega ; 7(23): 19804-19815, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35721941

RESUMO

Heterogeneous iron-based catalysts governing selectivity for the reduction of nitroarenes and aldehydes have received tremendous attention in the arena of catalysis, but relatively less success has been achieved. Herein, we report a green strategy for the facile synthesis of a lignin residue-derived carbon-supported magnetic iron (γ-Fe2O3/LRC-700) nanocatalyst. This active nanocatalyst exhibits excellent activity and selectivity for the hydrogenation of nitroarenes to anilines, including pharmaceuticals (e.g., flutamide and nimesulide). Challenging and reducible functionalities such as halogens (e.g., chloro, iodo, and fluoro) and ketone, ester, and amide groups were tolerated. Moreover, biomass-derived aldehyde (e.g., furfural) and other aromatic aldehydes were also effective for the hydrogenation process, often useful in biomedical sciences and other important areas. Before and after the reaction, the γ-Fe2O3/LRC-700 nanocatalyst was thoroughly characterized by X-ray diffraction (XRD), N2 adsorption-desorption, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), Raman spectroscopy, and thermogravimetric analysis (TGA). Additionally, the γ-Fe2O3/LRC-700 nanocatalyst is stable and easily separated using an external magnet and recycled up to five cycles with no substantial drop in the activity. Eventually, sustainable and green credentials for the hydrogenation reactions of 4-nitrobenzamide to 4-aminobenzamide and benzaldehyde to benzyl alcohol were assessed with the help of the CHEM21 green metrics toolkit.

15.
Environ Sci Pollut Res Int ; 29(29): 44135-44147, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35122201

RESUMO

The rapid pace of economic development has resulted in the release of several polycyclic aromatic hydrocarbons (PAHs) into the environment. Microbial degradation using white-rot fungi is a promising method for the removal of PAHs from the environment. In the present study, biodegradation of recalcitrant PAH by a white-rot fungus, Trametes maxima IIPLC-32, was investigated using pyrene. The pyrene concentration decreased by 79.80%, 65.37%, and 56.37% within 16 days from the initial levels of 10 mg L-1, 25 mg L-1, and 50 mg L-1, respectively. Gas chromatographic-mass spectrometric identification of prominent metabolites 1-hydroxypyrene, 2-methyl-1-naphthyl acetic acid, di-n-butyl phthalate, and diethyl phthalate helped in determining the pyrene degradation pathway. The presence of 81 extracellular proteins was revealed by secretome analysis. The identified proteins up-regulated in response to pyrene degradation were classified into detoxification proteins (6.12%), redox proteins (6.12%), stress proteins (4.08%), metabolic-related proteins (26.53%), translation and transcriptional proteins (49%), catalytic proteins (49%), and other proteins (8.16%). Knowledge of secretome analysis in pyrene degradation helped to understand the degradation mechanism of pyrene. Also, the study suggests that T. maxima IIPLC-32 has the potential to be used in the bioremediation of PAH contaminated aquatic environment.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Trametes , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Polyporaceae , Pirenos/metabolismo , Secretoma , Trametes/metabolismo
16.
Chem Commun (Camb) ; 58(13): 2208-2211, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35072682

RESUMO

A novel visible light-driven catalyst-free oxidation of aldehydes using CO2 both in batch and flow photoreactors to get corresponding acids along with the formation of CO in the effluent gas is described.

17.
Bioresour Technol ; 343: 126121, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34653630

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are hazardous environmental pollutants with widespread and well-recognized health concerns. Amidst more than a hundred known PAHs, 16 are categorized as priority pollutants. Use of widely diverse biological machinery comprising bacteria, fungi, and algae harnessed from contaminated sites has emerged as an ecologically safe and sustainable approach for PAH degradation. The potential of these biological systems has been thoroughly examined to maximize the degradation of specific PAHs by understanding their detailed biochemical pathways, enzymatic system, and gene organization. Recent advancements in microbial genetic engineering and metabolomics using modern analytical tools have facilitated the bioremediation of such xenobiotics. This review explores the role of microbes, their biochemical pathways, genetic regulation of metabolic pathways, and the effect of biosurfactants against the backdrop of PAH substrate structures.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Fungos
18.
ACS Appl Mater Interfaces ; 14(1): 1334-1346, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941265

RESUMO

Tungsten disulfide (WS2) exhibits intriguing tribological properties and has been explored as an excellent lubricious material in thin-film and solid lubricants. However, the poor dispersibility of WS2 has been a major challenge for its utilization in liquid lubricant applications. Herein, a top-down integrated approach is presented to synthesize oxygenated WS2 (WS2-O) nanosheets via strong acid-mediated oxidation and ultrasound-assisted exfoliation. The ultrathin sheets of WS2-O, comprising 4-7 molecular lamellae, exhibit oxygen/hydroxyl functionalities. The organosilanes having variable surface-active leaving groups (chloro and ethoxy) are covalently grafted, targeting the hydroxyl/oxygen functionalities on the surface of WS2-O nanosheets. The grafting of organosilanes is governed by the reactivity of chloro and ethoxy leaving groups. The DFT calculations further support the covalent interaction between the WS2-O nanosheets and organosilanes. The alkyl chain-functionalized WS2-O nanosheets displayed excellent dispersibility in mineral lube base oil. A minute dose of chemically functionalized-WS2 (0.2 mg.mL-1) notably enhanced the tribological properties of mineral lube oil by reducing the friction coefficient (52%) and wear volume (79%) for a steel tribopair. Raman analysis of worn surfaces revealed WS2-derived lubricious thin film formation. The improved tribological properties are attributed to ultralow thickness, stable dispersion, and low shear strength of chemically functionalized WS2 nanosheets, along with protective thin film formation over the contact interfaces of a steel tribopair. The present work opens a new avenue toward exploiting low-dimensional nanosheets for minimizing energy losses due to high friction.

19.
Indian J Microbiol ; 61(3): 250-261, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34294990

RESUMO

There is an upsurge in industrial production to meet the rising demands of the rapidly growing population globally. The enormous energy demand of the growing economies still depends upon petroleum. It has also resulted in environmental pollution due to the release of petroleum origin pollutants. Soil and aquifers, especially in the direct impact zones of petroleum refineries, are the worst hit. The integrated concept of bioremediation and resource recovery offers a sustainable solution to mitigate environmental pollution. It involves biodegradation, a benign utilization of toxic wastes, and the recycling of natural resources. Bioremediation is considered an integral contributor to the emerging concepts of bio-economy and sustainable development goals. This review article aims to provide an updated overview of bioremediation involving petroleum-based contaminants. Microbial degradation is discussed as a promising strategy for petroleum refinery effluent and sludge treatment. The review also provides an insight into resource reuse and recovery as a holistic approach towards sustainable refinery waste treatment. Furthermore, the integrated technologies that deserve in-depth exploration for future study in the refinery sector are highlighted in the present study.

20.
Bioresour Technol ; 337: 125422, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34186333

RESUMO

Oleaginous yeast fermentation process has gained attention for yeast single cell oil production. However, after lipid extraction, the leftover de-oiled yeast biomass has not been investigated in detail for its suitability for thermochemical conversion. To understand the structural and morphological changes, the comparative characterization of yeast and de-oiled yeast biomass before and post lipid extraction is necessary. The present study investigates the characteristics of an oleaginous yeast Rhodotorula mucilaginosa IIPL32's de-oiled biomass for its potential utilization. FTIR, XRD, SEM, EDX, XRF, and TGA analysis were performed to understand the biomass properties. Increased surface area and structural changes were observed in de-oiled yeast biomass with an increase in crystallinity, indicating chitosan availability. Maximum thermal degradation temperature was reduced to 260 °C for de-oiled yeast biomass from 300 °C for dried yeast after lipid extraction. The findings favored de-oiled yeast biomass for multiple applications that merit further detailed investigation with different thermochemical interventions.


Assuntos
Biocombustíveis , Fermento Seco , Biomassa , Óleos , Rhodotorula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...