Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Endocr Soc ; 6(9): bvac109, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37283844

RESUMO

Nongenomic effects of estrogen receptor α (ERα) signaling have been described for decades. Several distinct animal models have been generated previously to analyze the nongenomic ERα signaling (eg, membrane-only ER, and ERαC451A). However, the mechanisms and physiological processes resulting solely from nongenomic signaling are still poorly understood. Herein, we describe a novel mouse model for analyzing nongenomic ERα actions named H2NES knock-in (KI). H2NES ERα possesses a nuclear export signal (NES) in the hinge region of ERα protein resulting in exclusive cytoplasmic localization that involves only the nongenomic action but not nuclear genomic actions. We generated H2NESKI mice by homologous recombination method and have characterized the phenotypes. H2NESKI homozygote mice possess almost identical phenotypes with ERα null mice except for the vascular activity on reendothelialization. We conclude that ERα-mediated nongenomic estrogenic signaling alone is insufficient to control most estrogen-mediated endocrine physiological responses; however, there could be some physiological responses that are nongenomic action dominant. H2NESKI mice have been deposited in the repository at Jax (stock no. 032176). These mice should be useful for analyzing nongenomic estrogenic responses and could expand analysis along with other ERα mutant mice lacking membrane-bound ERα. We expect the H2NESKI mouse model to aid our understanding of ERα-mediated nongenomic physiological responses and serve as an in vivo model for evaluating the nongenomic action of various estrogenic agents.

2.
Methods Mol Biol ; 1960: 1-21, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30798517

RESUMO

The study of gene function in normal human physiology and pathophysiology is complicated by countless factors such as genetic diversity (~98 million SNPs identified in the human genome as of June 2015), environmental exposure, epigenetic imprinting, maternal/in utero exposure, diet, exercise, age, sex, socioeconomic factors, and many other variables. Inbred mouse lines have allowed researchers to control for many of the variables that define human diversity but complicate the study of the human genome, gene/protein function, cellular and molecular pathways, and countless other genetic diseases. Furthermore, genetically modified mouse models enable us to generate and study mice whose genomes differ by as little as a single point mutation while controlling for non-genomic variables. This allows researchers to elucidate the quintessential function of a gene, which will further not only our scientific understanding, but provide key insight into human health and disease. Recent advances in CRISPR/Cas9 genome editing have revolutionized scientific protocols for introducing mutations into the mammalian genome. The ensuing chapter provides an overview of CRISPR/Cas9 genome editing in murine embryonic stem cells for the generation of genetically modified mouse models.


Assuntos
Sistemas CRISPR-Cas/genética , Células-Tronco Embrionárias/metabolismo , Edição de Genes/métodos , Animais , Camundongos , Camundongos Transgênicos , Mutação/genética
3.
Hum Mol Genet ; 27(24): 4273-4287, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30212841

RESUMO

The identity of the gonads is determined by which fate, ovarian granulosa cell or testicular Sertoli cell, the bipotential somatic cell precursors choose to follow. In most vertebrates, the conserved transcription factor FOXL2 contributes to the fate of granulosa cells. To understand FOXL2 functions during gonad differentiation, we performed genome-wide analysis of FOXL2 chromatin occupancy in fetal ovaries and established a genetic mouse model that forces Foxl2 expression in the fetal testis. When FOXL2 was ectopically expressed in the somatic cell precursors in the fetal testis, FOXL2 was sufficient to repress Sertoli cell differentiation, ultimately resulting in partial testis-to-ovary sex-reversal. Combining genome-wide analysis of FOXL2 binding in the fetal ovary with transcriptomic analyses of our Foxl2 gain-of-function and previously published Foxl2 loss-of-function models, we identified potential pathways responsible for the feminizing action of FOXL2. Finally, comparison of FOXL2 genome-wide occupancy in the fetal ovary with testis-determining factor SOX9 genome-wide occupancy in the fetal testis revealed extensive overlaps, implying that antagonistic signals between FOXL2 and SOX9 occur at the chromatin level.


Assuntos
Proteína Forkhead Box L2/genética , Fatores de Transcrição SOX9/genética , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Animais , Cromatina/genética , Feminino , Desenvolvimento Fetal/genética , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Genoma/genética , Gônadas/crescimento & desenvolvimento , Masculino , Camundongos , Ovário/crescimento & desenvolvimento , Ligação Proteica , Testículo/crescimento & desenvolvimento , Transcriptoma/genética
4.
J Vis Exp ; (135)2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29912196

RESUMO

In an effort to increase efficiency in the creation of genetically modified mice via ES Cell methodologies, we present an adaptation to the current blastocyst injection protocol. Here we report that a simple rotation of the embryo, and injection through Trans-Inner cell mass (TICM) increased the percentage of chimeric mice from 31% to 50%, with no additional equipment or further specialized training. 26 different inbred clones, and 35 total clones were injected over a period of 9 months. There was no significant difference in either pregnancy rate or recovery rate of embryos between traditional injection techniques and TICM. Therefore, without any major alteration in the injection process and a simple positioning of the blastocyst and injecting through the ICM, releasing the ES cells into the blastocoel cavity can potentially improve the quantity of chimeric production and subsequent germline transmission.


Assuntos
Quimerismo , Células-Tronco Embrionárias/metabolismo , Microinjeções/métodos , Animais , Feminino , Masculino , Camundongos , Gravidez
5.
Genesis ; 55(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28371069

RESUMO

P0-Cre and Wnt1-Cre mouse lines have been widely used in combination with loxP-flanked mice to label and genetically modify neural crest (NC) cells and their derivatives. Wnt1-Cre has been regarded as the gold standard and there have been concerns about the specificity of P0-Cre because it is not clear about the timing and spatial distribution of the P0-Cre transgene in labeling NC cells at early embryonic stages. We re-visited P0-Cre and Wnt1-Cre models in the labeling of NC cells in early mouse embryos with a focus on cranial NC. We found that R26-lacZ Cre reporter responded to Cre activity more reliably than CAAG-lacZ Cre reporter during early embryogenesis. Cre immunosignals in P0-Cre and reporter (lacZ and RFP) activity in P0-Cre/R26-lacZ and P0-Cre/R26-RFP embryos was detected in the cranial NC and notochord regions in E8.0-9.5 (4-19 somites) embryos. P0-Cre transgene expression was observed in migrating NC cells and was more extensive in the forebrain and hindbrain but not apparent in the midbrain. Differences in the Cre distribution patterns of P0-Cre and Wnt1-Cre were profound in the midbrain and hindbrain regions, that is, extensive in the midbrain of Wnt1-Cre and in the hindbrain of P0-Cre embryos. The difference between P0-Cre and Wnt1-Cre in labeling cranial NC may provide a better explanation of the differential distributions of their NC derivatives and of the phenotypes caused by Cre-driven genetic modifications.


Assuntos
Crista Neural/citologia , Células-Tronco Neurais/citologia , Neurogênese , Animais , Linhagem da Célula , Integrases/genética , Integrases/metabolismo , Mesencéfalo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Crista Neural/embriologia , Crista Neural/metabolismo , Células-Tronco Neurais/metabolismo , Prosencéfalo/citologia , Transgenes , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
6.
PLoS Genet ; 12(12): e1006510, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28027321

RESUMO

Ellis-van Creveld (EvC) syndrome is a skeletal dysplasia, characterized by short limbs, postaxial polydactyly, and dental abnormalities. EvC syndrome is also categorized as a ciliopathy because of ciliary localization of proteins encoded by the two causative genes, EVC and EVC2 (aka LIMBIN). While recent studies demonstrated important roles for EVC/EVC2 in Hedgehog signaling, there is still little known about the pathophysiological mechanisms underlying the skeletal dysplasia features of EvC patients, and in particular why limb development is affected, but not other aspects of organogenesis that also require Hedgehog signaling. In this report, we comprehensively analyze limb skeletogenesis in Evc2 mutant mice and in cell and tissue cultures derived from these mice. Both in vivo and in vitro data demonstrate elevated Fibroblast Growth Factor (FGF) signaling in Evc2 mutant growth plates, in addition to compromised but not abrogated Hedgehog-PTHrP feedback loop. Elevation of FGF signaling, mainly due to increased Fgf18 expression upon inactivation of Evc2 in the perichondrium, critically contributes to the pathogenesis of limb dwarfism. The limb dwarfism phenotype is partially rescued by inactivation of one allele of Fgf18 in the Evc2 mutant mice. Taken together, our data uncover a novel pathogenic mechanism to understand limb dwarfism in patients with Ellis-van Creveld syndrome.


Assuntos
Nanismo/genética , Síndrome de Ellis-Van Creveld/genética , Fatores de Crescimento de Fibroblastos/genética , Proteínas de Membrana/genética , Animais , Modelos Animais de Doenças , Nanismo/patologia , Síndrome de Ellis-Van Creveld/patologia , Fatores de Crescimento de Fibroblastos/biossíntese , Lâmina de Crescimento/crescimento & desenvolvimento , Lâmina de Crescimento/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Membrana/biossíntese , Camundongos , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Polidactilia/genética , Polidactilia/patologia , Transdução de Sinais , Anormalidades Dentárias/genética , Anormalidades Dentárias/patologia
7.
Bone ; 88: 74-84, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27113526

RESUMO

Bone morphogenetic protein (BMP) signaling pathways play critical roles in skeletal development and new bone formation. Our previous study, however, showed a negative impact of BMP signaling on bone mass because of the osteoblast-specific loss of a BMP receptor (i.e. BMPR1A) showing increased trabecular bone volume and mineral density in mice. Here, we investigated the bone quality and biomechanical properties of the higher bone mass associated with BMPR1A deficiency using the osteoblast-specific Bmpr1a conditional knockout (cKO) mouse model. Collagen biochemical analysis revealed greater levels of the mature cross-link pyridinoline in the cKO bones, in parallel with upregulation of collagen modifying enzymes. Raman spectroscopy distinguished increases in the mature to immature cross-link ratio and mineral to matrix ratio in the trabecular compartments of cKO femora, but not in the cortical compartments. The mineral crystallinity was unchanged in the cKO in either the trabecular or cortical compartments. Further, we tested the intrinsic material properties by nanoindentation and found significantly higher hardness and elastic modulus in the cKO trabecular compartments, but not in the cortical compartments. Four point bending tests of cortical compartments showed lower structural biomechanical properties (i.e. strength and stiffness) in the cKO bones due to the smaller cortical areas. However, there were no significant differences in biomechanical performance at the material level, which was consistent with the nanoindentation test results on the cortical compartment. These studies emphasize the pivotal role of BMPR1A in the determination of bone quality and mechanical integrity under physiological conditions, with different impact on femoral cortical and trabecular compartments.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Osso Esponjoso/metabolismo , Colágeno/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Fêmur/metabolismo , Osteoblastos/metabolismo , Transdução de Sinais , Animais , Fenômenos Biomecânicos , Matriz Óssea/metabolismo , Osso Esponjoso/fisiologia , Módulo de Elasticidade , Fêmur/fisiologia , Regulação da Expressão Gênica , Dureza , Camundongos Transgênicos , Processamento de Proteína Pós-Traducional
8.
J Biol Chem ; 288(19): 13467-80, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23546880

RESUMO

BACKGROUND: The role of Smad-independent TGF-ß signaling in craniofacial development is poorly elucidated. RESULTS: In craniofacial mesenchymal cells, Tak1 regulates both R-Smad C-terminal and linker region phosphorylation in TGF-ß signaling. CONCLUSION: Tak1 plays an irreplaceable role in craniofacial ecto-mesenchyme during embryogenesis. SIGNIFICANCE: Understanding the mechanisms of TGF-ß signaling contributes to knowledge of pathogenetic mechanisms underlying common craniofacial birth defects. Although the importance of TGF-ß superfamily signaling in craniofacial growth and patterning is well established, the precise details of its signaling mechanisms are still poorly understood. This is in part because of the concentration of studies on the role of the Smad-dependent (so-called "canonical") signaling pathways relative to the Smad-independent ones in many biological processes. Here, we have addressed the role of TGF-ß-activated kinase 1 (Tak1, Map3k7), one of the key mediators of Smad-independent (noncanonical) TGF-ß superfamily signaling in craniofacial development, by deleting Tak1 specifically in the neural crest lineage. Tak1-deficient mutants display a round skull, hypoplastic maxilla and mandible, and cleft palate resulting from a failure of palatal shelves to appropriately elevate and fuse. Our studies show that in neural crest-derived craniofacial ecto-mesenchymal cells, Tak1 is not only required for TGF-ß- and bone morphogenetic protein-induced p38 Mapk activation but also plays a role in agonist-induced C-terminal and linker region phosphorylation of the receptor-mediated R-Smads. Specifically, we demonstrate that the agonist-induced linker region phosphorylation of Smad2 at Thr-220, which has been shown to be critical for full transcriptional activity of Smad2, is dependent on Tak1 activity and that in palatal mesenchymal cells TGFßRI and Tak1 kinases mediate both overlapping and distinct TGF-ß2-induced transcriptional responses. To summarize, our results suggest that in neural crest-derived ecto-mesenchymal cells, Tak1 provides a critical point of intersection in a complex dialogue between the canonical and noncanonical arms of TGF-ß superfamily signaling required for normal craniofacial development.


Assuntos
MAP Quinase Quinase Quinases/fisiologia , Crista Neural/citologia , Processamento de Proteína Pós-Traducional , Proteínas Smad/metabolismo , Motivos de Aminoácidos , Animais , Células Cultivadas , Fissura Palatina/enzimologia , Fissura Palatina/genética , Ectoderma/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Cabeça/embriologia , MAP Quinase Quinase Quinases/deficiência , MAP Quinase Quinase Quinases/genética , Masculino , Mandíbula/anormalidades , Camundongos , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Proteínas Smad Reguladas por Receptor/metabolismo , Proteínas da Superfamília de TGF-beta/fisiologia , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
9.
J Bone Miner Res ; 28(6): 1422-33, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23281127

RESUMO

Craniosynostosis describes conditions in which one or more sutures of the infant skull are prematurely fused, resulting in facial deformity and delayed brain development. Approximately 20% of human craniosynostoses are thought to result from gene mutations altering growth factor signaling; however, the molecular mechanisms by which these mutations cause craniosynostosis are incompletely characterized, and the causative genes for diverse types of syndromic craniosynostosis have yet to be identified. Here, we show that enhanced bone morphogenetic protein (BMP) signaling through the BMP type IA receptor (BMPR1A) in cranial neural crest cells, but not in osteoblasts, causes premature suture fusion in mice. In support of a requirement for precisely regulated BMP signaling, this defect was rescued on a Bmpr1a haploinsufficient background, with corresponding normalization of Smad phosphorylation. Moreover, in vivo treatment with LDN-193189, a selective chemical inhibitor of BMP type I receptor kinases, resulted in partial rescue of craniosynostosis. Enhanced signaling of the fibroblast growth factor (FGF) pathway, which has been implicated in craniosynostosis, was observed in both mutant and rescued mice, suggesting that augmentation of FGF signaling is not the sole cause of premature fusion found in this model. The finding that relatively modest augmentation of Smad-dependent BMP signaling leads to premature cranial suture fusion suggests an important contribution of dysregulated BMP signaling to syndromic craniosynostoses and potential strategies for early intervention.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Craniossinostoses/embriologia , Crista Neural/embriologia , Transdução de Sinais , Proteínas Smad/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/antagonistas & inibidores , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Craniossinostoses/genética , Craniossinostoses/metabolismo , Craniossinostoses/patologia , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Crista Neural/metabolismo , Crista Neural/patologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Proteínas Smad/genética
10.
Proc Natl Acad Sci U S A ; 108(36): 14986-91, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21873215

RESUMO

The estrogen receptor (ER) is a ligand-dependent transcription factor containing two transcriptional activation domains. AF-1 is in the N terminus of the receptor protein and AF-2 activity is dependent on helix 12 of the C-terminal ligand-binding domain. Two point mutations of leucines 543 and 544 to alanines (L543A, L544A) in helix 12 minimized estrogen-dependent transcriptional activation and reversed the activity of the estrogen antagonists ICI182780 (ICI) and tamoxifen (TAM) into agonists in a similar manner that TAM activated WT ERα through AF-1 activation. To evaluate the physiological role of AF-1 and AF-2 for the tissue-selective function of TAM, we generated an AF-2-mutated ERα knock-in (AF2ERKI) mouse model. AF2ERKI homozygote female mice have hypoplastic uterine tissue and rudimentary mammary glands similar to ERα-KO mice. Female mice were infertile as a result of anovulation from hemorrhagic cystic ovaries and elevated serum LH and E2 levels, although the mutant ERα protein is expressed in the AF2ERKI model. The AF2ERKI phenotype suggests that AF-1 is not activated independently, even with high serum E2 levels. ICI and TAM induced uterotropic and ER-mediated gene responses in ovariectomized AF2ERKI female mice in the same manner as in TAM- and E2-treated WT mice. In contrast, ICI and TAM did not act as agonists to regulate negative feedback of serum LH or stimulate pituitary prolactin gene expression in a different manner than TAM- or E2-treated WT mice. The functionality of the mutant ERα in the pituitary appears to be different from that in the uterus, indicating that ERα uses AF-1 differently in the uterus and the pituitary for TAM action.


Assuntos
Substituição de Aminoácidos , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/metabolismo , Mutação Puntual , Tamoxifeno/farmacologia , Animais , Receptor alfa de Estrogênio/genética , Feminino , Técnicas de Introdução de Genes , Células HeLa , Humanos , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Masculino , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Camundongos , Camundongos Knockout , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Ovário/metabolismo , Ovário/patologia , Hipófise/metabolismo , Hipófise/patologia , Estrutura Terciária de Proteína , Útero/metabolismo , Útero/patologia
11.
Blood ; 114(12): 2401-10, 2009 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-19633199

RESUMO

Members of the tristetraprolin family of tandem CCCH finger proteins can bind to AU-rich elements in the 3'-untranslated region of mRNAs, leading to their deadenylation and subsequent degradation. Partial deficiency of 1 of the 4 mouse tristetraprolin family members, Zfp36l2, resulted in complete female infertility because of early embryo death. We have now generated mice completely deficient in the ZFP36L2 protein. Homozygous Zfp36l2 knockout (KO) mice died within approximately 2 weeks of birth, apparently from intestinal or other hemorrhage. Analysis of peripheral blood from KO mice showed a decrease in red and white cells, hemoglobin, hematocrit, and platelets. Yolk sacs from embryonic day 11.5 (E11.5) Zfp36l2 KO mice and fetal livers from E14.5 KO mice gave rise to markedly reduced numbers of definitive multilineage and lineage-committed hematopoietic progenitors. Competitive reconstitution experiments demonstrated that Zfp36l2 KO fetal liver hematopoietic stem cells were unable to adequately reconstitute the hematopoietic system of lethally irradiated recipients. These data establish Zfp36l2 as a critical modulator of definitive hematopoiesis and suggest a novel regulatory pathway involving control of mRNA stability in the life cycle of hematopoietic stem and progenitor cells.


Assuntos
Embrião de Mamíferos/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/patologia , Pancitopenia/genética , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/genética , Tristetraprolina/fisiologia , Animais , Northern Blotting , Southern Blotting , Medula Óssea/metabolismo , Embrião de Mamíferos/citologia , Feto/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas Imunoenzimáticas , Hibridização In Situ , Fígado/citologia , Fígado/metabolismo , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Pancitopenia/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Baço/citologia , Baço/metabolismo , Distribuição Tecidual
12.
Genesis ; 47(6): 385-91, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19358156

RESUMO

BMPRIA and its high-affinity ligand BMP4 have recently been shown to be expressed in the beta-cells of the pancreas. Here, we report the abnormalities of heterozygous mice for Bmpr1a in glucose metabolism during the course of intraperitoneal glucose tolerance test. The heterozygous mice had increased blood glucose levels throughout the first 2.5 h after the administration of glucose. Analysis of glucose-stimulated insulin secretion (GSIS) indicates that insulin secretion in the heterozygous mice is compromised, and induction of secreted insulin by stimulation is substantially lower compared with the wild-type controls. No apparent abnormalities in pancreas, thyroid, and liver were seen upon histological examination. Real-time PCR results of selected genes showed an increase in the mRNA level of Ins1 and Ins2 in the heterozygous group. These results indicate that the glucose-sensing pathway in these heterozygous mice is altered because of the heterozygosity in Bmpr1a. Together, our data suggest that BMP signaling through BMPRIA plays an important role in glucose metabolism and possibly working through the GSIS pathway.


Assuntos
Glicemia/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Transdução de Sinais , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Feminino , Expressão Gênica , Glucose/metabolismo , Teste de Tolerância a Glucose/estatística & dados numéricos , Heterozigoto , Insulina/sangue , Insulina/genética , Insulina/metabolismo , Secreção de Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Mutantes , Proinsulina/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
J Biol Chem ; 283(48): 33080-6, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-18829460

RESUMO

TAK1 kinase is an indispensable intermediate in several cytokine signaling pathways including tumor necrosis factor, interleukin-1, and transforming growth factor-beta signaling pathways. TAK1 also participates in stress-activated intracellular signaling pathways such as osmotic stress signaling pathway. TAK1-binding protein 1 (TAB1) is constitutively associated with TAK1 through its C-terminal region. Although TAB1 is known to augment TAK1 catalytic activity when it is overexpressed, the role of TAB1 under physiological conditions has not yet been identified. In this study, we determined the role of TAB1 in TAK1 signaling by analyzing TAB1-deficient mouse embryonic fibroblasts (MEFs). Tumor necrosis factor- and interleukin-1-induced activation of TAK1 was entirely normal in Tab1-deficient MEFs and could activate both mitogen-activated protein kinases and NF-kappaB. In contrast, we found that osmotic stress-induced activation of TAK1 was largely impaired in Tab1-deficient MEFs. Furthermore, we showed that the C-terminal 68 amino acids of TAB1 were sufficient to mediate osmotic stress-induced TAK1 activation. Finally, we attempted to determine the mechanism by which TAB1 activates TAK1. We found that TAK1 is spontaneously activated when the concentration is increased and that it is totally dependent on TAB1. Cell shrinkage under the osmotic stress condition increases the concentration of TAB1-TAK1 and may oligomerize and activate TAK1 in a TAB1-dependent manner. These results demonstrate that TAB1 mediates TAK1 activation only in a subset of TAK1 pathways that are mediated through spontaneous oligomerization of TAB1-TAK1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citocinas/metabolismo , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular , Embrião de Mamíferos/citologia , Ativação Enzimática/fisiologia , Fibroblastos/citologia , MAP Quinase Quinase Quinases/genética , Camundongos , Camundongos Knockout , Pressão Osmótica/fisiologia , Estrutura Terciária de Proteína/fisiologia
14.
J Chromatogr A ; 1210(1): 76-83, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18838141

RESUMO

A new peptide mapping with liquid chromatography (LC) using an ammonia-containing basic mobile phase was reported. As compared with a method under a traditional acidic condition with a mobile phase containing trifluoroacetic acid (TFA) or formic acid (FA), the new method exhibited excellent overall performance: it was advantageous over the TFA method in terms of the ultraviolet (UV) and mass spectrometry (MS) sensitivities and the sequence coverage for a tryptic map; it was superior to the FA method in terms of the UV sensitivity, the sequence coverage and the separation capacity. Due to a significant difference in the chromatographic selectivity, several important peptide mapping applications that were sometimes difficult to be conducted previously could now be carried out using the new method. For example, the baseline separation of peptides from the corresponding deamidated products could be achieved with confidence using the new method, a critical pre-requisite for definitive identification and quantification of the deamidation products with LC/MS. No on-column deamidation was observed with the conditions used for the separation. Complementary and confirmative information about a protein could be obtained by running its proteolytic digest under both the basic and acidic conditions.


Assuntos
Amônia/química , Cromatografia Líquida/métodos , Mapeamento de Peptídeos/métodos , Solventes/química , Formiatos/química , Espectrometria de Massas , Sensibilidade e Especificidade , Espectrofotometria Ultravioleta , Ácido Trifluoracético/química
15.
Proc Natl Acad Sci U S A ; 105(22): 7756-61, 2008 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-18511567

RESUMO

Cdx genes (Cdx1, Cdx2, and Cdx4) encode a family of caudal-related transcription factors that mediate anterior-posterior patterning during embryogenesis through Hox gene regulation. Homologues in the zebrafish have been shown to play key roles in blood formation. To define the role of Cdx genes during embryonic hematopoiesis in a mammalian system, we examined the hematopoietic potential of Cdx-deficient mouse embryonic stem cells (ESCs) in vitro and in vivo. Individual Cdx-deficient ESCs exhibited impaired embryonic hematopoietic progenitor formation and altered Hox gene expression, most notably for Cdx2 deficiency. A more severe hematopoietic defect was observed with compound Cdx deficiency than loss of function of any single Cdx gene. Reduced hematopoietic progenitor formation of ESCs deficient in multiple Cdx genes could be rescued by ectopic expression of Cdx4, concomitant with partially restored Hox gene expression. These results reveal an essential and partially redundant role for multiple Cdx genes during embryonic hematopoiesis in the mouse.


Assuntos
Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição/fisiologia , Animais , Fator de Transcrição CDX2 , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Knockout , Fatores de Transcrição/genética
16.
Dev Biol ; 316(2): 359-70, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18342849

RESUMO

Sox8 encodes a high-mobility group transcription factor that is widely expressed during development. Sox8, -9 and -10 form group E of the Sox gene family which has been implicated in several human developmental disorders. In contrast to other SoxE genes, the role of Sox8 is unclear and Sox8 mouse mutants reportedly showed only idiopathic weight loss and reduced bone density. The careful analysis of our Sox8 null mice, however, revealed a progressive male infertility phenotype. Sox8 null males only sporadically produced litters of reduced size at young ages. We have shown that SOX8 protein is a product of adult Sertoli cells and its elimination results in an age-dependent deregulation of spermatogenesis, characterized by sloughing of spermatocytes and round spermatids, spermiation failure and a progressive disorganization of the spermatogenic cycle, which resulted in the inappropriate placement and juxtaposition of germ cell types within the epithelium. Those sperm that did enter the epididymides displayed abnormal motility. These data show that SOX8 is a critical regulator of adult Sertoli cell function and is required for both its cytoarchitectural and paracrine interactions with germ cells.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Fertilidade/fisiologia , Camundongos/genética , Células de Sertoli/fisiologia , Fatores de Transcrição/fisiologia , Animais , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Éxons , Deleção de Genes , Genótipo , Masculino , Camundongos/embriologia , Camundongos Knockout , Camundongos Transgênicos , Reação em Cadeia da Polimerase , Mapeamento por Restrição , Fatores de Transcrição SOXE , Testículo/citologia , Testículo/embriologia , Testículo/fisiologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
17.
Nature ; 450(7166): 119-23, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17943087

RESUMO

Recent studies indicate that, similar to other covalent modifications, histone lysine methylation is subject to enzyme-catalysed reversion. So far, LSD1 (also known as AOF2) and the jumonji C (JmjC)-domain-containing proteins have been shown to possess histone demethylase activity. LSD1 catalyses removal of H3K4me2/H3K4me1 through a flavin-adenine-dinucleotide-dependent oxidation reaction. In contrast, JmjC-domain-containing proteins remove methyl groups from histones through a hydroxylation reaction that requires alpha-ketoglutarate and Fe(II) as cofactors. Although an increasing number of histone demethylases have been identified and biochemically characterized, their biological functions, particularly in the context of an animal model, are poorly characterized. Here we use a loss-of-function approach to demonstrate that the mouse H3K9me2/1-specific demethylase JHDM2A (JmjC-domain-containing histone demethylase 2A, also known as JMJD1A) is essential for spermatogenesis. We show that Jhdm2a-deficient mice exhibit post-meiotic chromatin condensation defects, and that JHDM2A directly binds to and controls the expression of transition nuclear protein 1 (Tnp1) and protamine 1 (Prm1) genes, the products of which are required for packaging and condensation of sperm chromatin. Thus, our work uncovers a role for JHDM2A in spermatogenesis and reveals transition nuclear protein and protamine genes as direct targets of JHDM2A.


Assuntos
Proteínas Cromossômicas não Histona/genética , Histonas/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Protaminas/genética , Espermatogênese , Transcrição Gênica , Alelos , Animais , Cromatina/genética , Cromatina/metabolismo , Histona Desmetilases com o Domínio Jumonji , Masculino , Meiose , Metilação , Camundongos , Mutação/genética , Oxirredutases N-Desmetilantes/genética , Espermátides/citologia , Espermátides/metabolismo , Espermátides/patologia
18.
Genesis ; 44(4): 159-67, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16604518

RESUMO

BMP signaling plays pleiotropic roles in various tissues. Transgenic mouse lines that overexpress BMP signaling in a tissue-specific manner would be beneficial; however, production of each tissue-specific transgenic mouse line is labor-intensive. Here, using a Cre-loxP system, we generated a conditionally overexpressing mouse line for BMP signaling through the type I receptor ALK2 (alternatively known as AVCRI, ActRI, or ActRIA). By mating this line with Cre-expression mouse lines, Cre-mediated recombination removes an intervening floxed lacZ expression cassette and thereby permits the expression of a constitutively active form of Alk2 (caAlk2) driven by a ubiquitous promoter, CAG. Tissue specificity of Cre recombination was monitored by a bicistronically expressed EGFP following Alk2 cDNA. Increased BMP signaling was confirmed by ectopic phosphorylation of SMAD1/5/8 in the areas where Cre recombination had occurred. The conditional overexpression system described here provides versatility in investigating gene functions in a tissue-specific manner without having to generate independent tissue-specific transgenic lines.


Assuntos
Receptores de Ativinas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais , Receptores de Ativinas Tipo I/genética , Adenoviridae/genética , Animais , Cruzamentos Genéticos , Feminino , Proteínas de Fluorescência Verde/metabolismo , Integrases/genética , Integrases/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Modelos Genéticos , Regiões Promotoras Genéticas , Recombinação Genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...