Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9138, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644366

RESUMO

Phosphorene is a unique semiconducting two-dimensional platform for enabling spintronic devices integrated with phosphorene nanoelectronics. Here, we have designed an all phosphorene lattice lateral spin valve device, conceived via patterned magnetic substituted atoms of 3d-block elements at both ends of a phosphorene nanoribbon acting as ferromagnetic electrodes in the spin valve. Through First-principles based calculations, we have extensively studied the spin-dependent transport characteristics of the new spin valve structures. Systematic exploration of the magnetoresistance (MR) of the spin valve for various substitutional atoms and bias voltage resulted in a phase diagram offering a colossal MR for V and Cr-substitutional atoms. Such MR can be directly attributed to their specific electronic structure, which can be further tuned by a gate voltage, for electric field controlled spin valves. The spin-dependent transport characteristics here reveal new features such as negative conductance oscillation and switching of the sign of MR due to change in the majority spin carrier type. Our study creates possibilities for the design of nanometric spin valves, which could enable integration of memory and logic elements for all phosphorene 2D processors.

2.
Sci Rep ; 14(1): 4371, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388641

RESUMO

Transition metal oxides (TMO) are the preferred materials for metal ion battery cathodes because of their high redox potentials and good metal-ion intercalation capacity, which serve as an outstanding replacement for layered sulphide. In this work, using first-principles calculations based on Density functional theory approach, we explored the structural and electronic properties which comprise of adsorption and diffusion behaviour along with the analysis of voltage profile and storage capacity of Ru doped two-dimensional transition metal oxide [Formula: see text], [Formula: see text], and [Formula: see text] monolayers. The adsorption of alkali ions (Li, Na) to the surface of TMOs is strengthened by Ru-atom doping. Ru doping enhanced the adsorption energy of Li/Na-ion by 25%/11% for [Formula: see text], 8%/13% for [Formula: see text], and 10%/11% [Formula: see text] respectively. The open circuit voltage (OCV) also increases due to the high adsorption capacity of doped Monolayers. Ru doping makes the semiconducting TMOs conduct, which is suitable for battery application. As alkali ion moves closer to the dopant site, the adsorption energy increases. When alkali ions are close to the vicinity of doping site, their diffusion barrier decrease and rises as they go further away. Our current findings will be useful in finding ways to improve the storage performance of 2D oxide materials for application in energy harvesting and green energy architecture.

3.
Sci Rep ; 13(1): 16599, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789039

RESUMO

Semiconductors with controllable electronic transport coupled with magnetic behaviour, offering programmable spin arrangements present enticing potential for next generation intelligent technologies. Integrating and linking these two properties has been a long standing challenge for material researchers. Recent discoveries in two-dimensional (2D) magnet shows an ability to tune and control the electronic and magnetic phases at ambient temperature. Here, we illustrate controlled spin transport within the magnetic phase of the 2D semiconductor CrOBr and reveal a substantial connection between its magnetic order and charge carriers. First, we systematically analyse the strain-induced electronic behaviour of 2D CrOBr using density functional theory calculations. Our study demonstrates the phase transition from a magnetic semiconductor → half metal → magnetic metal in the material under strain application, creating intriguing spin-resolved conductance with 100% spin polarisation and spin-injection efficiency. Additionally, the spin-polarised current-voltage (I-V) trend displayed conductance variations with high strain-assisted tunability and a peak-to-valley ratio as well as switching efficiency. Our study reveals that CrOBr can exhibit highly anisotropic behaviour with perfect spin filtering, offering new implications for strain engineered magneto-electronic devices.

4.
Sci Rep ; 13(1): 13696, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608024

RESUMO

Atomically thin two-dimensional (2D) Janus materials and their Van der Waals heterostructures (vdWHs) have emerged as a new class of intriguing semiconductor materials due to their versatile application in electronic and optoelectronic devices. Herein, We have invstigated most probable arrangements of different inhomogeneous heterostructures employing one layer of transition metal dichalcogenide, TMD (MoS2, WS2, MoSe2, and WSe2) piled on the top of Janus TMD (MoSeTe or WSeTe) and investigated their structural, electronic as well as optical properties through first-principles based calculations. After that, we applied twist engineering between the monolayers from 0[Formula: see text] 60[Formula: see text] twist angle, which delivers lattice reconstruction and improves the performance of the vdWHs due to interlayer coupling. The result reveals that all the proposed vdWHs are dynamically and thermodynamically stable. Some vdWHs such as MoS2/MoSeTe, WS2/WSeTe, MoS2/WSeTe, MoSe2/MoSeTe, and WS2/MoSeTe exhibit direct bandgap with type-II band alignment at some specific twist angle, which shows potential for future photovoltaic devices. Moreover, the electronic property and carrier mobility can be effectively tuned in the vdWHs compared to the respective monolayers. Furthermore, the visible optical absorption of all the Janus vdWHs at [Formula: see text] = 0[Formula: see text] can be significantly enhanced due to the weak inter-layer coupling and redistribution of the charges. Therefore, the interlayer twisting not only provides an opportunity to observe new exciting properties but also gives a novel route to modulate the electronic and optoelectronic properties of the heterostructure for practical applications.

5.
Phys Chem Chem Phys ; 22(22): 12806-12813, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32469019

RESUMO

Magnetic phase control and room temperature magnetic stability in two-dimensional (2D) materials are indispensable for realising advanced spintronic and magneto-electronic functions. Our current work employs first-principles calculations to comprehensively study the magnetic behaviour of 2D CrOCl, uncovering the impact of strain and electric field on the material. Our studies have revealed that uniaxial strain leads to the feasibility of room temperature ferromagnetism in the layer and also detected the occurrence of a ferromagnetic → antiferromagnetic phase transition in the system, which is anisotropic along the armchair and zigzag directions. Beyond such a strain effect, the coupling of strain and electric field leads to a remarkable enhancement of the Curie temperature (Tc) ∼ 450 K in CrOCl. These predictions based on our detailed simulations show the prospect of multi-stimuli magnetic phase control, which could have great significance for realizing magneto-mechanical sensors.

6.
Phys Chem Chem Phys ; 22(20): 11452-11459, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32391530

RESUMO

Detection and sequencing of various nucleobases are of immense usefulness that can revolutionise future medical diagnostics procedures. In this regard, the newly discovered 2D material, C3N, has demonstrated supreme potential for future nanoelectronic and spintronic developments due to its unique sets of electronic properties and structural similarity to graphene. Herein, we have investigated the effect of various nucleobases in the close vicinity of a C3N nanoribbon. Our extensive calculations revealed significant changes in the transport behaviour in the presence of DNA/RNA molecules. The transport response can be further modified through the (i) incorporation of doping, (ii) presence of defects, (iii) concentration of the adsorbed molecule, etc. Furthermore, in the presence of a gate voltage in a field-effect transistor (FET) geometry, the conductivity response can be improved significantly with an ∼100% change in the presence of an adsorbed molecule. The observation of a negative differential resistance (NDR) in the C3N system has also been reported here for the first time. Our current observation demonstrates the usefulness of the C3N system as a next generation bio-sensor for the sequencing of various nucleobases, offering new leads for future developments in bioelectronics, superior sensing architectures and sustainable designs.


Assuntos
Nanotubos de Carbono/química , Nitrilas/química , Adenina/análise , Adenina/química , Adsorção , Técnicas Biossensoriais/métodos , Citosina/análise , Citosina/química , Teoria da Densidade Funcional , Guanina/análise , Guanina/química , Modelos Químicos , Timina/análise , Timina/química , Uracila/análise , Uracila/química
7.
J Phys Condens Matter ; 32(41): 415301, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32320965

RESUMO

Recent reports on the two-dimensional (2D) material CrOCl revealed magnetic ordering and spin polarisation with Curie Temperature T c ∼ 160 K, values higher than most diluted magnetic semiconductors. Here, we investigate the uniaxial and biaxial strain-dependent electronic and transport properties of CrOCl monolayer using first-principles based calculations. The calculated Young's modulus indicates high mechanical flexibility for the application of high strain. Our study shows that strain can induce phase changes from a bipolar magnetic semiconductor → half metal → magnetic metal in the material, leading to interesting spin-resolved conductance with 100% spin filtering. Furthermore, the current-voltage (I-V) response showed conductance fluctuations, characterised by peak to valley ratio and switching efficiency offering high strain assisted tunability. Overall, CrOCl shows a highly anisotropic behaviour with the material displaying 100% spin polarisation in the tensile strain region. The electronic, transport and mechanical properties indicate that CrOCl is a versatile 2D material with multi-phase capabilities having promising applications for future nanospintronic devices.

8.
Phys Chem Chem Phys ; 22(10): 5893-5901, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32110783

RESUMO

Phosphorene has a unique set of characteristics such as a semiconducting nature, good carrier mobility and low-spin orbit coupling aspects which makes it a highly prospective two dimensional material for cross-hybrid architectures in nanoelectronics, spintronics, and optoelectronics. In the spintronic context, the creation of a stable magnetic order in phosphorene can be immensely beneficial for designing phosphorene spin circuits. In this work, we present high efficiency spin filtering behaviour in magnetically rendered phosphorene. First, we calculate the effect of doping various 3d block elements in phosphorene to introduce a stable magnetic order. Next, by varying doping concentrations in distinct doping configurations, an extensive phase diagram has been obtained depicting the presence of various electronic and magnetic states. This allows us to achieve a high magnetisation in the presence of various transition metal atoms, with a spin polarisation of ∼100% in half-metallic regimes. The transport behaviour reveals a map of the spin injection efficiency showing enhancement with doping concentration and reaching a perfect spin filtering capacity of ∼100% in the presence of Ti, Cr, Mn, Co, and Fe atoms. The present results offer new insights into engineered designs of multi-functional phosphorene spintronic circuits.

9.
RSC Adv ; 11(2): 946-952, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35423672

RESUMO

Tuning of system properties such as electronic and magnetic behaviour through various engineering techniques is necessary for optoelectronic and spintronic applications. In our current work, we employ first-principles methodologies along with Monte-Carlo simulations to comprehensively study the electronic and magnetic behaviour of 2-dimensional (2D) Cr2Ge2Te6 (T c = 61 K), uncovering the impact of strain and electric field on the material. In the presence of strain, we were able to achieve high temperature magnetic ordering in the layer along with observable phase crossover in the electronic state of the system, where the system exhibited transference from semiconducting to half-metallic state. Finally, on coupling strain and electric field remarkable increase in Curie temperature (T c) ∼ 331 K (above 5-fold enhancement from pristine configuration) was observed, which is very well above room temperature. Our inferences have shed light on a relatively new type of coupling method involving strain and electric field which may have tremendous implications in the development of 2D spintronic architecture.

10.
Phys Chem Chem Phys ; 21(42): 23713-23719, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31633128

RESUMO

Phosphorene is a unique two-dimensional semiconductor that exhibits huge potential for nanoelectronic, optoelectronic and spintronic applications and their cross-hybrid electronics. In particular, creation of magnetic phases in phosphorene selectively can provide a multitude of opportunities for developments in 2D spintronic circuits. Doping phosphorene with transition metal atoms can induce sustainable magnetic ordering, making it a diluted magnetic system, however, the viability of high temperature magnetic phases and potential control remain unanswered. In this work, using first-principles calculations, we uncover the impact of doping phosphorene with various 3d block elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) in increasing order of atomic number at various levels of doping. Such an extensive study helps us to find the doping conditions that lead to remarkable feasibility of ferromagnetism and antiferromagnetism up to a strikingly large temperature ∼1150 K, evaluated by mean field theory. The doping concentration and atom type can be used to systematically tune the phases from ferromagnetic and antiferromagnetic to non-magnetic ground states. Our work provides new guidelines for engineering multi-functional spintronic components using phosphorene as a base material for all-phosphorene spintronics.

11.
Phys Chem Chem Phys ; 20(19): 13508-13516, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29726870

RESUMO

Phosphorene is a single elemental, two-dimensional semiconductor that has quickly emerged as a high mobility material for transistors and optoelectronic devices. In addition, being a 2D material it can sustain high levels of strain, enabling sensitive modification of its electronic properties. In this paper, we investigate the strain dependent electronic properties of phosphorene nanocrystals. By performing extensive calculations we determine the electrical conductance as a function of uniaxial, as well as biaxial strain stimuli and uncover a unique zone phase diagram. This enables us to uncover conductance oscillations in pristine phosphorene for the first time, by the simple application of strain. We show that such unconventional current-voltage behaviour is tuneable by the nature of strain, and that an additional gate voltage can modulate the amplitude (peak to valley ratio) of the observed phenomena and its switching efficiency. Furthermore, we show that the switching is highly robust against doping and defects. Our detailed results present new leads for innovation in strain based gauging and high-frequency nanoelectronic switches of phosphorene.

12.
J Phys Condens Matter ; 28(19): 195302, 2016 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-27093536

RESUMO

Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications.

13.
Phys Rev Lett ; 110(10): 107004, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23521284

RESUMO

Muon-spin rotation measurements, performed on the mixed state of the classic anisotropic superconductor Bi(2.15)Sr(1.85)CaCu(2)O(8+δ), obtain quantities directly related to two- and three-body correlations of vortices in space. A novel phase diagram emerges from such local probe measurements of the bulk, revealing an unusual glassy state at intermediate fields which appears to freeze continuously from the equilibrium vortex liquid but differs both from the lattice and the conventional high-field vortex glass state in its structure.

14.
Anal Chem ; 71(7): 1378-83, 1999 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-10204039

RESUMO

The coupling of an electrothermal vaporization (ETV) apparatus to an inductively coupled plasma time-of-flight mass spectrometer (ICP-TOFMS) is described. The ability of the ICP-TOFMS to produce complete elemental mass spectra at high repetition rates is experimentally demonstrated. A signal-averaging data acquisition board is employed to rapidly record complete elemental spectra throughout the vaporization stage of the ETV temperature cycle; a solution containing 34 elements is analyzed. The reduction of both molecular and atomic isobaric interferences through the temperature program of the furnace is demonstrated. Isobaric overlaps among the isotopes of cadmium, tin, and indium are resolved by exploiting differences in the vaporization characteristics of the elements. Figures of merit for the system are defined with several different data acquisition schemes capable of operating at the high repetition rate of the TOF instrument. With the use of both ion counting and a boxcar averager, the dynamic range is shown to be linear over a range of at least 6 orders of magnitude. A pair of boxcar averagers are used to measure the isotope ratio for silver with a precision of 1.9% RSD, despite a cycle-to-cycle precision of 19% RSD. Detection limits of 10-80 fg are calculated for seven elements, based upon a 10-microL injection.


Assuntos
Espectrometria de Massas/métodos , Espectrometria de Massas/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...