Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 8(10): 3606-3622, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37747817

RESUMO

Recent advances in skin-interfaced wearable sweat sensors enable the noninvasive, real-time monitoring of biochemical signals associated with health and wellness. These wearable platforms leverage microfluidic channels, biochemical sensors, and flexible electronics to enable the continuous analysis of sweat-based biomarkers such as electrolytes, metabolites, and hormones. As this field continues to mature, the potential of low-cost, continuous personalized health monitoring enabled by such wearable sensors holds significant promise for addressing some of the formidable obstacles to delivering comprehensive medical care in under-resourced settings. This Perspective highlights the transformative potential of wearable sweat sensing for providing equitable access to cutting-edge healthcare diagnostics, especially in remote or geographically isolated areas. It examines the current understanding of sweat composition as well as recent innovations in microfluidic device architectures and sensing strategies by showcasing emerging applications and opportunities for innovation. It concludes with a discussion on expanding the utility of wearable sweat sensors for clinically relevant health applications and opportunities for enabling equitable access to innovation to address existing health disparities.


Assuntos
Suor , Dispositivos Eletrônicos Vestíveis , Suor/química , Saúde Global , Medicina de Precisão , Pele/química
2.
Semin Neurol ; 43(3): 439-453, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37562454

RESUMO

Intracranial venous pathologies are a historically underrecognized group of disorders that can have a devastating impact on patients. Despite advancements in peripheral venous disorders and arterial neurointerventions, intracranial venous pathologies have received comparatively little attention. Understanding the anatomy, physiology, clinical relevance, and treatment options of intracranial venous pathologies is fundamental to evolving therapies and research priorities. This article provides an overview of major intracranial venous pathologies, the respective pathophysiologies, and treatment options.

3.
J Neurointerv Surg ; 16(1): 4-7, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37438101

RESUMO

Generative artificial intelligence (AI) holds great promise in neurointerventional surgery by providing clinicians with powerful tools for improving surgical precision, accuracy of diagnoses, and treatment planning. However, potential perils include biases or inaccuracies in the data used to train the algorithms, over-reliance on generative AI without human oversight, patient privacy concerns, and ethical implications of using AI in medical decision-making. Careful regulation and oversight are needed to ensure that the promises of generative AI in neurointerventional surgery are realized while minimizing its potential perils.[ChatGPT authored summary using the prompt "In one paragraph summarize the promises and perils of generative AI in neurointerventional surgery".].


Assuntos
Algoritmos , Inteligência Artificial , Humanos , Tomada de Decisão Clínica
4.
Sci Adv ; 9(18): eadg4272, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37134158

RESUMO

Skin-interfaced wearable systems with integrated microfluidic structures and sensing capabilities offer powerful platforms for monitoring the signals arising from natural physiological processes. This paper introduces a set of strategies, processing approaches, and microfluidic designs that harness recent advances in additive manufacturing [three-dimensional (3D) printing] to establish a unique class of epidermal microfluidic ("epifluidic") devices. A 3D printed epifluidic platform, called a "sweatainer," demonstrates the potential of a true 3D design space for microfluidics through the fabrication of fluidic components with previously inaccessible complex architectures. These concepts support integration of colorimetric assays to facilitate in situ biomarker analysis operating in a mode analogous to traditional epifluidic systems. The sweatainer system enables a new mode of sweat collection, termed multidraw, which facilitates the collection of multiple, independent sweat samples for either on-body or external analysis. Field studies of the sweatainer system demonstrate the practical potential of these concepts.


Assuntos
Microfluídica , Suor , Suor/química , Microfluídica/métodos , Dispositivos Lab-On-A-Chip , Pele/química , Epiderme
5.
MRS Adv ; 6(25): 636-643, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34532078

RESUMO

Acoustic forces are an attractive pathway to achieve directed assembly for multi-phase materials via additive processes. Programmatic integration of microstructure and structural features during deposition offers opportunities for optimizing printed component performance. We detail recent efforts to integrate acoustic focusing with a direct-ink-write mode of printing to modulate material transport properties (e.g. conductivity). Acoustic field-assisted printing, operating under a multi-node focusing condition, supports deposition of materials with multiple focused lines in a single-pass printed line. Here, we report the demonstration of acoustic focusing in concert with diffusive self-assembly to rapidly assembly and print multiscale, mm-length colloidal solids on a timescale of seconds to minutes. These efforts support the promising capabilities of acoustic field-assisted deposition-based printing to achieve spatial control of printed microstructures with deterministic, long-range ordering across multiple length scales.

6.
ACS Sens ; 6(8): 2787-2801, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34351759

RESUMO

Skin-interfaced wearable systems with integrated colorimetric assays, microfluidic channels, and electrochemical sensors offer powerful capabilities for noninvasive, real-time sweat analysis. This Perspective details recent progress in the development and translation of novel wearable sensors for personalized assessment of sweat dynamics and biomarkers, with precise sampling and real-time analysis. Sensor accuracy, system ruggedness, and large-scale deployment in remote environments represent key opportunity areas, enabling broad deployment in the context of field studies, clinical trials, and recent commercialization. On-body measurements in these contexts show good agreement compared to conventional laboratory-based sweat analysis approaches. These device demonstrations highlight the utility of biochemical sensing platforms for personalized assessment of performance, wellness, and health across a broad range of applications.


Assuntos
Suor , Dispositivos Eletrônicos Vestíveis , Microfluídica , Pele
7.
Sci Transl Med ; 13(587)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790027

RESUMO

The concentration of chloride in sweat remains the most robust biomarker for confirmatory diagnosis of cystic fibrosis (CF), a common life-shortening genetic disorder. Early diagnosis via quantitative assessment of sweat chloride allows prompt initiation of care and is critically important to extend life expectancy and improve quality of life. The collection and analysis of sweat using conventional wrist-strapped devices and iontophoresis can be cumbersome, particularly for infants with fragile skin, who often have insufficient sweat production. Here, we introduce a soft, epidermal microfluidic device ("sweat sticker") designed for the simple and rapid collection and analysis of sweat. Intimate, conformal coupling with the skin supports nearly perfect efficiency in sweat collection without leakage. Real-time image analysis of chloride reagents allows for quantitative assessment of chloride concentrations using a smartphone camera, without requiring extraction of sweat or external analysis. Clinical validation studies involving patients with CF and healthy subjects, across a spectrum of age groups, support clinical equivalence compared to existing device platforms in terms of accuracy and demonstrate meaningful reductions in rates of leakage. The wearable microfluidic technologies and smartphone-based analytics reported here establish the foundation for diagnosis of CF outside of clinical settings.


Assuntos
Fibrose Cística , Suor , Cloretos , Fibrose Cística/diagnóstico , Fibrose Cística/terapia , Humanos , Lactente , Qualidade de Vida , Smartphone
8.
Sens Actuators B Chem ; 3322021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33542590

RESUMO

Sweat is a promising, yet relatively unexplored biofluid containing biochemical information that offers broad insights into the underlying dynamic metabolic activity of the human body. The rich composition of electrolytes, metabolites, hormones, proteins, nucleic acids, micronutrients, and exogenous agents found in sweat dynamically vary in response to the state of health, stress, and diet. Emerging classes of skin-interfaced wearable sensors offer powerful capabilities for the real-time, continuous analysis of sweat produced by the eccrine glands in a manner suitable for use in athletics, consumer wellness, military, and healthcare industries. This perspective examines the rapid and continuous progress of wearable sweat sensors through the most advanced embodiments that address the fundamental challenges currently restricting widespread deployment. It concludes with a discussion of efforts to expand the overall utility of wearable sweat sensors and opportunities for commercialization, in which advances in biochemical sensor technologies will be critically important.

9.
Lab Chip ; 20(23): 4391-4403, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33089837

RESUMO

Important insights into human health can be obtained through the non-invasive collection and detailed analysis of sweat, a biofluid that contains a wide range of essential biomarkers. Skin-interfaced microfluidic platforms, characterized by soft materials and thin geometries, offer a collection of capabilities for in situ capture, storage, and analysis of sweat and its constituents. In ambulatory uses cases, the ability to provide real-time feedback on sweat loss, rate and content, without visual inspection of the device, can be important. This paper introduces a low-profile skin-interfaced system that couples disposable microfluidic sampling devices with reusable 'stick-on' electrodes and wireless readout electronics that remain isolated from the sweat. An ultra-thin capping layer on the microfluidic platform permits high-sensitivity, contactless capacitive measurements of both sweat loss and sweat conductivity. This architecture avoids the potential for corrosion of the sensing components and eliminates the need for cleaning/sterilizing the electronics, thereby resulting in a cost-effective platform that is simple to use. Optimized electrode designs follow from a combination of extensive benchtop testing, analytical calculations and FEA simulations for two sensing configurations: (1) sweat rate and loss, and (2) sweat conductivity, which contains information about electrolyte content. Both configurations couple to a flexible, wireless electronics platform that digitizes and transmits information to Bluetooth-enabled devices. On-body field testing during physical exercise validates the performance of the system in scenarios of practical relevance to human health and performance.


Assuntos
Técnicas Biossensoriais , Suor , Eletrônica , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica , Pele
10.
Adv Mater ; 31(32): e1902109, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31206791

RESUMO

Comprehensive analysis of sweat chemistry provides noninvasive health monitoring capabilities that complement established biophysical measurements such as heart rate, blood oxygenation, and body temperature. Recent developments in skin-integrated soft microfluidic systems address many challenges associated with standard technologies in sweat collection and analysis. However, recording of time-dependent variations in sweat composition requires bulky electronic systems and power sources, thereby constraining form factor, cost, and modes of use. Here, presented are unconventional design concepts, materials, and device operation principles that address this challenge. Flexible galvanic cells embedded within skin-interfaced microfluidics with passive valves serve as sweat-activated "stopwatches" that record temporal information associated with collection of discrete microliter volumes of sweat. The result allows for precise measurements of dynamic sweat composition fluctuations using in situ or ex situ analytical techniques. Integrated electronics based on near-field communication (NFC) protocols or docking stations equipped with standard electronic measurement tools provide means for extracting digital timing results from the stopwatches. Human subject studies of time-stamped sweat samples by in situ colorimetric methods and ex situ techniques based on inductively coupled plasma mass spectroscopy (ICP-MS) and chlorodimetry illustrate the ability to quantitatively capture time-dynamic sweat chemistry in scenarios compatible with field use.


Assuntos
Desenho de Equipamento/instrumentação , Dispositivos Lab-On-A-Chip , Pele/química , Suor/química , Técnicas Biossensoriais/instrumentação , Colorimetria , Teste de Esforço , Humanos , Smartphone , Fatores de Tempo , Dispositivos Eletrônicos Vestíveis
11.
Science ; 364(6447)2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31249029

RESUMO

At the intersection of the outwardly disparate fields of nanoparticle science and three-dimensional printing lies the promise of revolutionary new "nanocomposite" materials. Emergent phenomena deriving from the nanoscale constituents pave the way for a new class of transformative materials with encoded functionality amplified by new couplings between electrical, optical, transport, and mechanical properties. We provide an overview of key scientific advances that empower the development of such materials: nanoparticle synthesis and assembly, multiscale assembly and patterning, and mechanical characterization to assess stability. The focus is on recent illustrations of approaches that bridge these fields, facilitate the design of ordered nanocomposites, and offer clear pathways to device integration. We conclude by highlighting the remaining scientific challenges, including the critical need for assembly-compatible particle-fluid systems that ultimately yield mechanically robust materials. The role of domain boundaries and/or defects emerges as an important open question to address, with recent advances in fabrication setting the stage for future work in this area.

12.
ACS Sens ; 4(2): 379-388, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30707572

RESUMO

Real-time measurements of the total loss of sweat, the rate of sweating, the temperature of sweat, and the concentrations of electrolytes and metabolites in sweat can provide important insights into human physiology. Conventional methods use manual collection processes (e.g., absorbent pads) to determine sweat loss and lab-based instrumentation to analyze its chemical composition. Although such schemes can yield accurate data, they cannot be used outside of laboratories or clinics. Recently reported wearable electrochemical devices for sweat sensing bypass these limitations, but they typically involve on-board electronics, electrodes, and/or batteries for measurement, signal processing, and wireless transmission, without direct means for measuring sweat loss or capturing and storing small volumes of sweat. Alternative approaches exploit soft, skin-integrated microfluidic systems for collection and colorimetric chemical techniques for analysis. Here, we present the most advanced platforms of this type, in which optimized chemistries, microfluidic designs, and device layouts enable accurate assessments not only of total loss of sweat and sweat rate but also of quantitatively accurate values of the pH and temperature of sweat, and of the concentrations of chloride, glucose, and lactate across physiologically relevant ranges. Color calibration markings integrated into a graphics overlayer allow precise readout by digital image analysis, applicable in various lighting conditions. Field studies conducted on healthy volunteers demonstrate the full capabilities in measuring sweat loss/rate and analyzing multiple sweat biomarkers and temperature, with performance that quantitatively matches that of conventional lab-based measurement systems.


Assuntos
Colorimetria/instrumentação , Dispositivos Lab-On-A-Chip , Pele , Suor/química , Temperatura , Biomarcadores/análise , Humanos , Limite de Detecção , Fenômenos Mecânicos
13.
Chem Rev ; 119(8): 5461-5533, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30689360

RESUMO

Bio-integrated wearable systems can measure a broad range of biophysical, biochemical, and environmental signals to provide critical insights into overall health status and to quantify human performance. Recent advances in material science, chemical analysis techniques, device designs, and assembly methods form the foundations for a uniquely differentiated type of wearable technology, characterized by noninvasive, intimate integration with the soft, curved, time-dynamic surfaces of the body. This review summarizes the latest advances in this emerging field of "bio-integrated" technologies in a comprehensive manner that connects fundamental developments in chemistry, material science, and engineering with sensing technologies that have the potential for widespread deployment and societal benefit in human health care. An introduction to the chemistries and materials for the active components of these systems contextualizes essential design considerations for sensors and associated platforms that appear in following sections. The subsequent content highlights the most advanced biosensors, classified according to their ability to capture biophysical, biochemical, and environmental information. Additional sections feature schemes for electrically powering these sensors and strategies for achieving fully integrated, wireless systems. The review concludes with an overview of key remaining challenges and a summary of opportunities where advances in materials chemistry will be critically important for continued progress.


Assuntos
Técnicas Biossensoriais/instrumentação , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais/métodos , Humanos , Ciência dos Materiais/métodos
14.
Sci Transl Med ; 10(465)2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30381410

RESUMO

Hydrocephalus is a common and costly neurological condition caused by the overproduction and/or impaired resorption of cerebrospinal fluid (CSF). The current standard of care, ventricular catheters (shunts), is prone to failure, which can result in nonspecific symptoms such as headaches, dizziness, and nausea. Current diagnostic tools for shunt failure such as computed tomography (CT), magnetic resonance imaging (MRI), radionuclide shunt patency studies (RSPSs), and ice pack-mediated thermodilution have disadvantages including high cost, poor accuracy, inconvenience, and safety concerns. Here, we developed and tested a noninvasive, skin-mounted, wearable measurement platform that incorporates arrays of thermal sensors and actuators for precise, continuous, or intermittent measurements of flow through subdermal shunts, without the drawbacks of other methods. Systematic theoretical and experimental benchtop studies demonstrate high performance across a range of practical operating conditions. Advanced electronics designs serve as the basis of a wireless embodiment for continuous monitoring based on rechargeable batteries and data transmission using Bluetooth protocols. Clinical studies involving five patients validate the sensor's ability to detect the presence of CSF flow (P = 0.012) and further distinguish between baseline flow, diminished flow, and distal shunt failure. Last, we demonstrate processing algorithms to translate measured data into quantitative flow rate. The sensor designs, fabrication schemes, wireless architectures, and patient trials reported here represent an advance in hydrocephalus diagnostics with ability to visualize flow in a simple, user-friendly mode, accessible to the physician and patient alike.


Assuntos
Derivações do Líquido Cefalorraquidiano , Epiderme/fisiologia , Hidrocefalia/fisiopatologia , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Humanos , Reologia , Incerteza
15.
Small ; 14(47): e1803192, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30369049

RESUMO

Precise, quantitative measurements of the thermal properties of human skin can yield insights into thermoregulatory function, hydration, blood perfusion, wound healing, and other parameters of clinical interest. The need for wired power supply systems and data communication hardware limits, however, practical applicability of existing devices designed for measurements of this type. Here, a set of advanced materials, mechanics designs, integration schemes, and wireless circuits is reported as the basis for wireless, battery-free sensors that softly interface to the skin to enable precise measurements of its temperature and thermal transport properties. Calibration processes connect these parameters to the hydration state of the skin, the dynamics of near-surface flow through blood vessels and implanted catheters, and to recovery processes following trauma. Systematic engineering studies yield quantitative metrics in precision and reliability in real-world conditions. Evaluations on five human subjects demonstrate the capabilities in measurements of skin hydration and injury, including examples of continuous wear and monitoring over a period of 1 week, without disrupting natural daily activities.


Assuntos
Eletrônica/métodos , Pele/metabolismo , Tecnologia sem Fio , Humanos
16.
Lab Chip ; 18(15): 2178-2186, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29955754

RESUMO

The rich composition of solutes and metabolites in sweat and its relative ease of collection upon excretion from skin pores make this class of biofluid an attractive candidate for point of care analysis. Wearable technologies that combine electrochemical sensors with conventional or emerging semiconductor device technologies offer valuable capabilities in sweat sensing, but they are limited to assays that support amperometric, potentiometric, and colorimetric analyses. Here, we present a complementary approach that exploits fluorometric sensing modalities integrated into a soft, skin-interfaced microfluidic system which, when paired with a simple smartphone-based imaging module, allows for in situ measurement of important biomarkers in sweat. A network array of microchannels and a collection of microreservoirs pre-filled with fluorescent probes that selectively react with target analytes in sweat (e.g. probes), enable quantitative, rapid analysis. Field studies on human subjects demonstrate the ability to measure the concentrations of chloride, sodium and zinc in sweat, with accuracy that matches that of conventional laboratory techniques. The results highlight the versatility of advanced fluorescent-based imaging modalities in body-worn sweat microfluidics platforms, and they suggest some practical potential for these ideas.


Assuntos
Fluorometria/instrumentação , Dispositivos Lab-On-A-Chip , Imagem Molecular/instrumentação , Pele/química , Smartphone , Suor/química , Cloretos/análise , Humanos , Sódio/análise , Zinco/análise
17.
Small ; 14(12): e1703334, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29394467

RESUMO

This paper introduces super absorbent polymer valves and colorimetric sensing reagents as enabling components of soft, skin-mounted microfluidic devices designed to capture, store, and chemically analyze sweat released from eccrine glands. The valving technology enables robust means for guiding the flow of sweat from an inlet location into a collection of isolated reservoirs, in a well-defined sequence. Analysis in these reservoirs involves a color responsive indicator of chloride concentration with a formulation tailored to offer stable operation with sensitivity optimized for the relevant physiological range. Evaluations on human subjects with comparisons against ex situ analysis illustrate the practical utility of these advances.


Assuntos
Colorimetria/métodos , Microfluídica/métodos , Polímeros/química , Suor/química , Humanos , Dispositivos Lab-On-A-Chip , Pele/metabolismo
18.
Lab Chip ; 17(15): 2572-2580, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28664954

RESUMO

During periods of activity, sweat glands produce pressures associated with osmotic effects to drive liquid to the surface of the skin. The magnitudes of these pressures may provide insights into physiological health, the intensity of physical exertion, psychological stress factors and/other information of interest, yet they are currently unknown due to absence of means for non-invasive measurement. This paper introduces a thin, soft wearable microfluidic system that mounts onto the surface of the skin to enable precise and routine measurements of secretory fluidic pressures generated at the surface of the skin by eccrine sweat glands (surface SPSG, or s-SPSG) at nearly any location on the body. These platforms incorporate an arrayed collection of unit cells each of which includes an opening to the skin, an inlet through which sweat can flow, a capillary bursting valve (CBV) with a unique bursting pressure (BP), a corresponding microreservoir to receive sweat and an outlet to the surrounding ambient to allow release of backpressure. The BPs systematically span the physiologically relevant range, to enable a measurement precision approximately defined by the ratio of the range to the number of unit cells. Human studies demonstrate measurements of s-SPSG under different conditions, from various regions of the body. Average values in healthy young adults lie between 2.4 and 2.9 kPa. Sweat associated with vigorous exercise have s-SPSGs that are somewhat higher than those associated with sedentary activity. For all conditions, the forearm and lower back tend to yield the highest and lowest s-SPSGs, respectively.


Assuntos
Glândulas Écrinas/fisiologia , Técnicas Analíticas Microfluídicas/instrumentação , Pele/metabolismo , Suor/metabolismo , Dispositivos Eletrônicos Vestíveis , Adulto , Glândulas Écrinas/metabolismo , Desenho de Equipamento , Humanos , Masculino , Técnicas Analíticas Microfluídicas/métodos , Pressão
19.
Langmuir ; 31(12): 3577-86, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25730093

RESUMO

Plasmonic nanoparticles are used in a wide variety of applications over a broad array of fields including medicine, energy, and environmental chemistry. The continued successful development of this material class requires the accurate characterization of nanoparticle stability for a variety of solution-based conditions. Although many characterization methods exists, there is an absence of a unified, quantitative means for assessing the colloidal stability of plasmonic nanoparticles. We present the particle instability parameter (PIP) as a robust, quantitative, and generalizable characterization technique based on UV-vis absorbance spectroscopy to characterize colloidal instability. We validate PIP performance with both traditional and alternative characterization methods by measuring gold nanorod instability in response to different salt (NaCl) concentrations. We further measure gold nanorod stability as a function of solution pH, salt, and buffer (type and concentration), nanoparticle concentration, and concentration of free surfactant. Finally, these results are contextualized within the literature on gold nanorod stability to establish a standardized methodology for colloidal instability assessment.


Assuntos
Nanopartículas Metálicas/química , Soluções Tampão , Cetrimônio , Compostos de Cetrimônio/química , Coloides , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Cloreto de Sódio/química , Espectrofotometria Ultravioleta , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...