Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Games Health J ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757664

RESUMO

Objective: This research evaluates from a usability point of view the combination of a developed fully immersive virtual reality (VR) solution with the SWalker robotic device. It aims to contribute to research in the exploration of immersive experiences overground with a functional gait recovery device. Materials and Methods: We evaluated the system in a pilot study with 20 healthy participants aged 85.1 (SD: 6.29). Participants used the SWalker-VR platform while testing one VR application focused on walking and the other on balance practice. Afterward, the participants answered three usability questionnaires. Results: The platform was validated in terms of safety using the Simulator Sickness Questionnaire, obtaining less than 20 points for all subscales: nausea (4.29 ± 14.47), oculomotor (0.38 ± 14.18), and disorientation (1.39 ± 14.52). For usability evaluation, the System Usability Scale provided an overall score of 70.63 ± 11.64, and the Post-Study System Usability Questionnaire (PSSUQ) rated 1.61 ± 0.54. The usability scores reported by both questionnaires were moderate and good, respectively. These results were similar in overall scores for both groups: participants with low cognitive level and participants with high cognitive level. Finally, the possible causes for the "no answered" responses on the PSSUQ were discussed. Conclusion: It is concluded that the SWalker-VR platform is reported to have adequate usability and high security by older adults. The potential interest of studying the effects of the long-term use of this platform by older adults with gait impairment is expressed. Clinical Trials reference: NCT06025981.

2.
JMIR Serious Games ; 12: e39286, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38180843

RESUMO

Background: New interventions based on motor learning principles and neural plasticity have been tested among patients with ataxia and hemiparesis. Therapies of pedaling exercises have also shown their potential to induce improvements in muscle activity, strength, and balance. Virtual reality (VR) has been demonstrated as an effective tool for improving the adherence to physical therapy, but it is still undetermined if it promotes greater improvements than conventional therapy. Objective: Our objective was to compare the effect on lower limb range of motion (ROM) when using VR technology for cycling exercise versus not using VR technology. Methods: A randomized controlled trial with 20 patients with ataxia and hemiparesis was carried out. The participants were divided into 2 groups: the experimental group (n=10, 50%) performed pedaling exercises using the VR system and the control group (n=10, 50%) performed pedaling exercises without using VR. Measurements of the active and passive ROM of the hip and knee joint were taken before and after a cycling intervention, which consisted of 3 sessions of the same duration but with progressively increasing speeds (4, 5, and 6 km/h). Repeated measures ANOVAs were conducted to compare the preintervention (Ti) and postintervention (Te) assessments within each group. Additionally, the improvement effect of using the VR system was analyzed by comparing the variation coefficient (Δ = 1 - [Te / Ti]) between the preintervention and postintervention assessments for each group. Group comparisons were made using independent 1-tailed t tests. Results: Significant improvements were shown in active left hip flexion (P=.03) over time, but there was no group-time interaction effect (P=.67). Passive left hip flexion (P=.93) did not show significant improvements, and similar results were observed for active and passive right hip flexion (P=.39 and P=.83, respectively). Neither assessments of knee flexion (active left: P=.06; passive left: P=.76; active right: P=.34; passive right: P=.06) nor knee extension showed significant changes (active left: P=.66; passive left: P=.92; active right: P=.12; passive right: P=.38). However, passive right knee extension (P=.04) showed a significant improvement over time. Overall, although active and passive ROM of the knee and hip joints showed a general improvement, no statistically significant differences were found between the groups. Conclusions: In this study, participants who underwent the cycling intervention using the VR system showed similar improvement in lower limb ROM to the participants who underwent conventional training. Ultimately, the VR system can be used to engage participants in physical activity.

3.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941171

RESUMO

Powered lower limb exoskeletons have been used in recent decades to support and improve conventional gait rehabilitation programs. In this context, visual feedback is considered a valuable tool to facilitate patient learning and engagement. Treadmill-based lower limb robotic exoskeletons are commonly incorporated with traditional screens or virtual reality (VR) devices. However, these modalities are incompatible with over-ground robotic exoskeletons, in which users should pay attention to multiple elements of the open environment and more complex tasks. Recent advances in augmented reality (AR) technology have unlocked a new way of displaying 3D graphics in untethered wearable devices like Microsoft's Hololens 2 without occluding the rest of the user's field of view. These advances can be crucial in certain situations and position AR as an excellent candidate to improve visual feedback when using robotic exoskeletons. In this work, we present the development of an AR-based audio-visual feedback system that tracks the trunk rotation from an Inertial Measurement Unit (IMU) to aid in walking tasks assisted by a lower limb robotic exoskeleton. A preliminary study was done integrating the H3 robotic exoskeleton with Hololens 2. We observed that displaying posture information is feasible and could help mitigate the unnatural posture often imposed by a robotic exoskeleton.


Assuntos
Realidade Aumentada , Exoesqueleto Energizado , Humanos , Estudos de Viabilidade , Retroalimentação , Caminhada , Marcha
4.
Sensors (Basel) ; 23(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37112252

RESUMO

The aim of the study was to develop a novel real-time, computer-based synchronization system to continuously record pressure and craniocervical flexion ROM (range of motion) during the CCFT (craniocervical flexion test) in order to assess its feasibility for measuring and discriminating the values of ROM between different pressure levels. This was a descriptive, observational, cross-sectional, feasibility study. Participants performed a full-range craniocervical flexion and the CCFT. During the CCFT, a pressure sensor and a wireless inertial sensor simultaneously registered data of pressure and ROM. A web application was developed using HTML and NodeJS technologies. Forty-five participants successfully finished the study protocol (20 males, 25 females; 32 (11.48) years). ANOVAs showed large effect significant interactions between pressure levels and the percentage of full craniocervical flexion ROM when considering the 6 pressure reference levels of the CCFT (p < 0.001; η2 = 0.697), 11 pressure levels separated by 1 mmHg (p < 0.001; η2 = 0.683), and 21 pressure levels separated by 0.5 mmHg (p < 0.001; η2 = 0.671). The novel time synchronizing system seems a feasible option to provide real-time monitoring of both pressure and ROM, which could serve as reference targets to further investigate the potential use of inertial sensor technology to assess or train deep cervical flexors.


Assuntos
Cervicalgia , Dispositivos Eletrônicos Vestíveis , Masculino , Feminino , Humanos , Estudos de Viabilidade , Fenômenos Biomecânicos , Estudos Transversais , Músculos do Pescoço , Amplitude de Movimento Articular
5.
PeerJ ; 11: e15095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37013145

RESUMO

The rehabilitation of children with motor disorders is mainly focused on physical interventions. Numerous studies have demonstrated the benefits of upper function using robotic exoskeletons. However, there is still a gap between research and clinical practice, owing to the cost and complexity of these devices. This study presents a proof of concept of a 3D-printed exoskeleton for the upper limb, following a design that replicates the main characteristics of other effective exoskeletons described in the literature. 3D printing enables rapid prototyping, low cost, and easy adjustment to the patient anthropometry. The 3D-printed exoskeleton, called POWERUP, assists the user's movement by reducing the effect of gravity, thereby allowing them to perform upper limb exercises. To validate the design, this study performed an electromyography-based assessment of the assistive performance of POWERUP, focusing on the muscular response of both the biceps and triceps during elbow flexion-extension movements in 11 healthy children. The Muscle Activity Distribution (MAD) is the proposed metric for the assessment. The results show that (1) the exoskeleton correctly assists elbow flexion, and (2) the proposed metric easily identifies the exoskeleton configuration: statistically significant differences (p-value = 2.26 ⋅ 10-7 < 0.001) and a large effect size (Cohen's d = 3.78 > 0.8) in the mean MAD value were identified for both the biceps and triceps when comparing the transparent mode (no assistance provided) with the assistive mode (anti-gravity effect). Therefore, this metric was proposed as a method for assessing the assistive performance of exoskeletons. Further research is required to determine its usefulness for both the evaluation of selective motor control (SMC) and the impact of robot-assisted therapies.


Assuntos
Exoesqueleto Energizado , Transtornos Motores , Humanos , Criança , Eletromiografia , Extremidade Superior/fisiologia , Impressão Tridimensional
6.
PLoS One ; 18(2): e0280743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36812248

RESUMO

Achieving adherence to physical exercise training is essential in elders and adults with neurological disorders. Immersive technologies are seeing wide adoption among new neurorehabilitation therapies, as they provide a highly effective motivational and stimulating component. The aim of this study is to verify whether the developed virtual reality system for pedaling exercise is accepted and could be safety, useful and motivating for these populations. A feasibility study was conducted with patients with neuromotor disorders and elderly people from Lescer Clinic and the residential group Albertia, respectively. All the participants performed a pedaling exercise session with virtual reality platform. Then, the Intrinsic Motivation Inventory, the System Usability Scale (SUS), Credibility and Expectancy Questionnaire, were assessed in the group of 20 adults (mean age = 61.1; standard deviation = 12.617, 15 males and 5 females) with lower limb disorders. While the Simulator Sickness Questionnaire, Presence Questionnaire, Game user Experience Satisfaction Scale and SUS were assessed in the group of 18 elders (mean age = 85.16; standard deviation = 5.93, 5 males and 13 females). In light of the outcomes, PedaleoVR is considered to be a credible, usable and motivational tool towards adults with neuromotor disorders to perform cycling exercise, and therefore its usage could contribute to adherence to lower limb training activities. Moreover, PedaleoVR does not generate negative effects related to cybersickness while the sensation of presence and the degree of satisfaction generated have been positively evaluated by the geriatric population. This trial has been registered at ClinicalTrials.gov under the identifier: NCT05162040, Dec 2021.


Assuntos
Reabilitação Neurológica , Realidade Virtual , Masculino , Adulto , Feminino , Humanos , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Exercício Físico , Terapia por Exercício , Modalidades de Fisioterapia
7.
Artigo em Inglês | MEDLINE | ID: mdl-36361414

RESUMO

The purpose of this work is to study the gap between the research evidence and the clinical practice in the physical rehabilitation of people with cerebral palsy. A review process was performed to (1) identify physical therapies to improve postural control in children with cerebral palsy and (2) determine the scientific evidence supporting the effectiveness of those therapies. A Likert-based survey addressing a total of 43 healthcare professionals involved in pediatric physical therapy departments in Spain was carried out. The discussion was mainly supported by studies of level I or II evidence (according to the Oxford scale). The search process yielded 50 studies reporting 16 therapies. A strong positive correlation between the most used treatments and elevated levels of satisfaction was found. Some well-known but not often used techniques, such as hippotherapy, were identified. The treatment with the highest degree of use and satisfaction-neurodevelopment therapy (Bobath)-and some emerging techniques, such as virtual reality, were also identified. The fact that there is a meaningful gap between clinical practice and the scientific evidence was confirmed. The identified gap brings a certain degree of controversy. While some classic and well-known therapies had poor levels of supporting evidence, other relatively new approaches showed promising results.


Assuntos
Paralisia Cerebral , Terapia Assistida por Cavalos , Criança , Humanos , Paralisia Cerebral/reabilitação , Lacunas da Prática Profissional , Modalidades de Fisioterapia , Equilíbrio Postural
8.
Artigo em Inglês | MEDLINE | ID: mdl-35580104

RESUMO

Hip fracture is one of the most common traumatisms associated with falls in the elderly, severely affecting the patient's mobility and independence. In recent years, the use of robotic technology has proven to be effective in gait rehabilitation, especially for neurological disorders. However, there is a lack of research validating these devices for hip fracture in elderly patients. This paper presents the design and evaluation of a novel assistive platform for hip rehabilitation, SWalker, aimed at improving the rehabilitation of this condition. Functional validation of the SWalker platform was carried out with five healthy elderly subjects and two physiotherapists. Clinical validation was conducted with 34 patients with hip fracture. The control group ( [Formula: see text], age = 86.38±6.16 years, 75% female) followed conventional therapy, while the intervention group ( [Formula: see text], age = 86.80±6.32 years, 90% female) was rehabilitated using SWalker. The functional validation of the device reported good acceptability (System Usability Scale >85). In the clinical validation, the control group required 68.09±27.38 rehabilitation sessions compared to 22.60±16.75 in the intervention group ( [Formula: see text]). Patients in the control group needed 120.33±53.64 days to reach ambulation, while patients rehabilitated with SWalker achieved that stage in 67.11±51.07 days ( [Formula: see text]). FAC and Tinetti indexes presented a larger improvement in the intervention group when compared with the control group ( [Formula: see text] and [Formula: see text], respectively). The SWalker platform can be considered an effective tool to enhance autonomous gait and shorten rehabilitation therapy in elderly hip fracture patients. This result encourages further research on robotic rehabilitation platforms for hip fracture.


Assuntos
Fraturas do Quadril , Acidentes por Quedas , Idoso , Idoso de 80 Anos ou mais , Feminino , Marcha , Fraturas do Quadril/reabilitação , Humanos , Masculino , Caminhada
9.
BMJ Open ; 12(2): e058190, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168985

RESUMO

INTRODUCTION: Neck pain is a very common musculoskeletal disorder associated with high socioeconomic costs derived from work absenteeism and medical expenses. Previous studies have suggested that patients with neck pain of different origins present sensorimotor control impairments compared with the asymptomatic population. However, there is a small number of published studies focusing on these with conflicting results. In addition, the existing methodological limitations highlight the need for more and better quality studies. Moreover, longitudinal studies are necessary to investigate whether changes in pain or disability in individuals with chronic neck pain over time associate with changes in cervical sensorimotor control. METHODS AND ANALYSIS: This is a descriptive, observational, longitudinal, prospective study consecutively enrolling 52 patients with non-specific neck pain and 52 age-matched asymptomatic participants.Intensity of pain, neck disability, duration of symptoms, topography of pain and comorbidities will be registered at baseline. Sensorimotor control variables including active range of motion, movement speed, acceleration, smoothness of motion, head repositioning accuracy and motion coupling patterns will be recorded as primary outcomes by means of inertial sensors during the following tests consecutively performed in two sessions separated by 12 months: (1) kinematics of planar movements, (2) kinematics of the craniocervical flexion movement, (3) kinematics during functional tasks and (4) kinematics of task-oriented neck movements in response to visual targets.Secondary outcomes will include: (1) Regular physical activity levels, (2) Kinesiophobia, (3) Symptoms related to central sensitisation and (4) The usability of the inertial measurement unit sensor technology. ETHICS AND DISSEMINATION: This study was approved by the Research Ethics Committee of CEU San Pablo University (495/21/39). Patients will be recruited after providing written informed consent and they will be able to withdraw their consent at any time. Only the study investigators will have access to the study data. The results will be disseminated through scientific publications, conferences and media. TRIAL REGISTRATION NUMBER: NCT05032911.


Assuntos
Dor Crônica , Cervicalgia , Humanos , Estudos Longitudinais , Cervicalgia/diagnóstico , Estudos Observacionais como Assunto , Estudos Prospectivos , Amplitude de Movimento Articular/fisiologia
10.
JMIR Serious Games ; 10(1): e31404, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103608

RESUMO

BACKGROUND: There is sparse research on the effectiveness of therapeutic exercise for the treatment of neck pain in older adult populations. Moreover, there is a lack of research on the use of serious games or virtual reality for the treatment of neck pain in this population. OBJECTIVE: The primary aim of this study was to develop and assess the suitability of a serious game for performing task-oriented cervical exercises in patients with neck pain. METHODS: A serious game was designed based on the key features identified by previous studies that designed serious video games for physical and cognitive rehabilitation or exercise. The game in this study was designed to provide an interactive scenario, with the main functionality of the software solution to control a virtual airplane to reach targets using head motions. At the end of the exercise, the application stores the targets reached and missed and the airplane's trajectory. A crossover pilot study was carried out for preliminary evaluation of the suitability of the technology in the older adult population. Men and women over 65 years of age with chronic neck pain were included. Subjects were randomly assigned to two study arms; each arm consisted of a sequence of two 4-week treatments with an intermediate washout period of 4 weeks. The total study duration was 16 weeks due to a final follow-up measure 4 weeks after the end of all treatments. Treatment A consisted of the use of the serious game developed in this study, and treatment B consisted of conventional exercises. Subjects allocated to the A-B study arm received treatment A first, followed by treatment B, and vice versa in the B-A arm. The following variables were assessed: Suitability Evaluation Questionnaire (SEQ) scores, Visual Analog Scale scores, and the number of targets reached in the serious game. RESULTS: A total of 18 subjects were assessed for eligibility. A total of 13 subjects, aged between 71 and 92 years (mean 81.85, SD 6.82), were finally included and completed the study protocol. The global mean SEQ score was 50.38 (SD 5.35) out of 65 points, showing good suitability of the serious game. Most patients considered the experience very enjoyable and "real" in terms of the virtual environment and found the information provided to be clear. Also, they believed that the game could be very helpful for their rehabilitation. None of the patients felt any neck pain or discomfort when playing the game, and only 2 patients out of 13 (15%) reported some degree of dizziness, eye discomfort, or disorientation, which did not limit their capacity to finish the session. CONCLUSIONS: The serious game developed in this study showed good suitability for use in adults over 70 years of age with chronic neck pain. The game was a safe method for performing task-oriented cervical exercises, and patients reported very high levels of satisfaction and acceptance after the use of this technology.

11.
Sensors (Basel) ; 21(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073142

RESUMO

This study evaluates and compares the suitability for child-computer interaction (CCI, the branch within human-computer interaction focused on interactive computer systems for children) of two devices: a standard computer mouse and the ENLAZA interface, a head mouse that measures the user's head posture using an inertial sensor. A multidirectional pointing task was used to assess the motor performance and the users' ability to learn such a task. The evaluation was based on the interpretation of the metrics derived from Fitts' law. Ten children aged between 6 and 8 participated in this study. Participants performed a series of pre- and post-training tests for both input devices. After the experiments, data were analyzed and statistically compared. The results show that Fitts' law can be used to detect changes in the learning process and assess the level of psychomotor development (by comparing the performance of adults and children). In addition, meaningful differences between the fine motor control (hand) and the gross motor control (head) were found by comparing the results of the interaction using the two devices. These findings suggest that Fitts' law metrics offer a reliable and objective way of measuring the progress of physical training or therapy.


Assuntos
Movimento , Desempenho Psicomotor , Computadores , Mãos , Postura
12.
J Neuroeng Rehabil ; 17(1): 152, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213452

RESUMO

BACKGROUND: The craniocervical flexion test (CCFT) is recommended when examining patients with neck pain related conditions and as a deep cervical retraining exercise option. During the execution of the CCFT the examiner should visually assess that the amount of craniocervical flexion range of motion (ROM) progressively increases. However, this task is very subjective. The use of inertial wearable sensors may be a user-friendly option to measure and objectively monitor the ROM. The objectives of our study were (1) to measure craniocervical flexion range of motion (ROM) associated with each stage of the CCFT using a wearable inertial sensor and to determine the reliability of the measurements and (2) to determine craniocervical flexion ROM targets associated with each stage of the CCFT to standardize their use for assessment and training of the deep cervical flexor (DCF) muscles. METHODS: Adults from a university community able to successfully perform the CCFT participated in this study. Two independent examiners evaluated the CCFT in two separate sessions. During the CCFT, a small wireless inertial sensor was adhered to the centre of the forehead to provide real-time monitoring and to record craniocervical flexion ROM. The intra- and inter-rater reliability of the assessment of craniocervical ROM was calculated. This study was approved by the Research Ethics Committee of CEU San Pablo University (236/17/08). RESULTS: Fifty-six participants (18 males, 23 females; mean [SD] age, 21.8 [3.45] years) were included in the study and successfully completed the study protocol. All interclass correlation coefficient (ICC) values indicated good or excellent reliability of the assessment of craniocervical ROM using a wearable inertial sensor. There was high variability between subjects on the amount of craniocervical ROM necessary to achieve each stage of the CCFT. CONCLUSIONS: The use of inertial sensors is a reliable method to measure the craniocervical flexion ROM associated with the CCFT. The great variability in the ROM limits the possibility to standardize a set of targets of craniocervical flexion ROM equivalent to each of the pressure targets of the pressure biofeedback unit.


Assuntos
Músculos do Pescoço/fisiologia , Cervicalgia/diagnóstico , Cervicalgia/reabilitação , Exame Físico/instrumentação , Dispositivos Eletrônicos Vestíveis , Feminino , Humanos , Masculino , Exame Físico/métodos , Amplitude de Movimento Articular , Reprodutibilidade dos Testes , Adulto Jovem
13.
PeerJ ; 8: e9687, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32864213

RESUMO

BACKGROUND: Elbow and wrist chronic conditions are very common among musculoskeletal problems. These painful conditions affect muscle function, which ultimately leads to a decrease in the joint's Range Of Motion (ROM). Due to their portability and ease of use, goniometers are still the most widespread tool for measuring ROM. Inertial sensors are emerging as a digital, low-cost and accurate alternative. However, whereas inertial sensors are commonly used in research studies, due to the lack of information about their validity and reliability, they are not widely used in the clinical practice. The goal of this study is to assess the validity and intra-inter-rater reliability of inertial sensors for measuring active ROM of the elbow and wrist. MATERIALS AND METHODS: Measures were taken simultaneously with inertial sensors (Werium™ system) and a universal goniometer. The process involved two physiotherapists ("rater A" and "rater B") and an engineer responsible for the technical issues. Twenty-nine asymptomatic subjects were assessed individually in two sessions separated by 48 h. The procedure was repeated by rater A followed by rater B with random order. Three repetitions of each active movement (elbow flexion, pronation, and supination; and wrist flexion, extension, radial deviation and ulnar deviation) were executed starting from the neutral position until the ROM end-feel; that is, until ROM reached its maximum due to be stopped by the anatomy. The coefficient of determination (r 2) and the Intraclass Correlation Coefficient (ICC) were calculated to assess the intra-rater and inter-rater reliability. The Standard Error of the Measurement and the Minimum Detectable Change and a Bland-Altman plots were also calculated. RESULTS: Similar ROM values when measured with both instruments were obtained for the elbow (maximum difference of 3° for all the movements) and wrist (maximum difference of 1° for all the movements). These values were within the normal range when compared to literature studies. The concurrent validity analysis for all the movements yielded ICC values ≥0.78 for the elbow and ≥0.95 for the wrist. Concerning reliability, the ICC values denoted a high reliability of inertial sensors for all the different movements. In the case of the elbow, intra-rater and inter-rater reliability ICC values range from 0.83 to 0.96 and from 0.94 to 0.97, respectively. Intra-rater analysis of the wrist yielded ICC values between 0.81 and 0.93, while the ICC values for the inter-rater analysis range from 0.93 to 0.99. CONCLUSIONS: Inertial sensors are a valid and reliable tool for measuring elbow and wrist active ROM. Particularly noteworthy is their high inter-rater reliability, often questioned in measurement tools. The lowest reliability is observed in elbow prono-supination, probably due to skin artifacts. Based on these results and their advantages, inertial sensors can be considered a valid assessment tool for wrist and elbow ROM.

14.
Sensors (Basel) ; 19(21)2019 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-31684102

RESUMO

Robotic exoskeletons that induce leg movement have proven effective for lower body rehabilitation, but current solutions offer limited gait patterns, lack stabilization, and do not properly stimulate the proprioceptive and balance systems (since the patient remains in place). Partial body weight support (PBWS) systems unload part of the patient's body weight during rehabilitation, improving the locomotive capabilities and minimizing the muscular effort. HYBRID is a complete system that combines a 6DoF lower body exoskeleton (H1) with a PBWS system (REMOVI) to produce a solution apt for clinical practice that offers improves on existing devices, moves with the patient, offers a gait cycle extracted from the kinematic analysis of healthy users, records the session data, and can easily transfer the patient from a wheelchair to standing position. This system was developed with input from therapists, and its response times have been measured to ensure it works swiftly and without a perceptible delay.


Assuntos
Peso Corporal , Exoesqueleto Energizado , Marcha/fisiologia , Movimento/fisiologia , Robótica , Humanos , Articulações/fisiologia , Amplitude de Movimento Articular , Interface Usuário-Computador
15.
Sensors (Basel) ; 19(21)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671921

RESUMO

This paper presents a review of the techniques found in the literature that aim to achieve a robust heartbeat detection from fusing multi-modal physiological signals (e.g., electrocardiogram (ECG), blood pressure (BP), artificial blood pressure (ABP), stroke volume (SV), photoplethysmogram (PPG), electroencephalogram (EEG), electromyogram (EMG), and electrooculogram (EOG), among others). Techniques typically employ ECG, BP, and ABP, of which usage has been shown to obtain the best performance under challenging conditions. SV, PPG, EMG, EEG, and EOG signals can help increase performance when included within the fusion. Filtering, signal normalization, and resampling are common preprocessing steps. Delay correction between the heartbeats obtained over some of the physiological signals must also be considered, and signal-quality assessment to retain the best signal/s must be considered as well. Fusion is usually accomplished by exploiting regularities in the RR intervals; by selecting the most promising signal for the detection at every moment; by a voting process; or by performing simultaneous detection and fusion using Bayesian techniques, hidden Markov models, or neural networks. Based on the results of the review, guidelines to facilitate future comparison of the performance of the different proposals are given and promising future lines of research are pointed out.


Assuntos
Frequência Cardíaca/fisiologia , Fisiologia/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Eletrocardiografia , Humanos , Análise de Ondaletas
16.
Sensors (Basel) ; 18(8)2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087258

RESUMO

Neck injuries and the related pain have a high prevalence and represent an important health problem. To properly diagnose and treat them, practitioners need an accurate system for measuring Cervical Range Of Motion (CROM). This article describes the development and validation of an inexpensive, small (4 cm × 4 cm × 8 cm), light (< 200 g) and easy to use solution for measuring CROM using wearable inertial sensors. The proposed solution has been designed with the clinical practice in mind, after consulting with practitioners. It is composed of: (a) two wearable wireless MEMS-based inertial devices, (b) a recording and report generation software application and (c) a measurement protocol for assessing CROM. The solution provides accurate (none of our results is outside the ROM ranges when compared with previously published results based on an optical tracking device) and reliable measurements (ICC = 0.93 for interrater reliability when compared with an optical tracking device and ICC > 0.90 for test-retest reliability), surpassing the popular CROM instrument's capabilities and precision. It also fulfills the needs for clinical practice attending to effectiveness, efficiency (4 min from setup to final report) and user's satisfaction (as reported by practitioners). The solution has been certified for mass-production and use in medical environments.

17.
Biomed Eng Online ; 16(Suppl 1): 74, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28830552

RESUMO

BACKGROUND: This paper presents the preliminary results of a novel rehabilitation therapy for cervical and trunk control of children with cerebral palsy (CP) based on serious videogames and physical exercise. MATERIALS: The therapy is based on the use of the ENLAZA Interface, a head mouse based on inertial technology that will be used to control a set of serious videogames with movements of the head. METHODS: Ten users with CP participated in the study. Whereas the control group (n = 5) followed traditional therapies, the experimental group (n = 5) complemented these therapies with a series of ten sessions of gaming with ENLAZA to exercise cervical flexion-extensions, rotations and inclinations in a controlled, engaging environment. RESULTS: The ten work sessions yielded improvements in head and trunk control that were higher in the experimental group for Visual Analogue Scale, Goal Attainment Scaling and Trunk Control Measurement Scale (TCMS). Significant differences (27% vs. 2% of percentage improvement) were found between the experimental and control groups for TCMS (p < 0.05). The kinematic assessment shows that there were some improvements in the active and the passive range of motion. However, no significant differences were found pre- and post-intervention. CONCLUSIONS: Physical therapy that combines serious games with traditional rehabilitation could allow children with CP to achieve larger function improvements in the trunk and cervical regions. However, given the limited scope of this trial (n = 10) additional studies are needed to corroborate this hypothesis.


Assuntos
Paralisia Cerebral/fisiopatologia , Paralisia Cerebral/terapia , Medula Cervical/fisiopatologia , Movimentos da Cabeça , Modalidades de Fisioterapia , Postura , Jogos de Vídeo , Fenômenos Biomecânicos , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Recuperação de Função Fisiológica
18.
Sensors (Basel) ; 12(3): 3049-67, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22736992

RESUMO

This work aims to create an advanced human-computer interface called ENLAZA for people with cerebral palsy (CP). Although there are computer-access solutions for disabled people in general, there are few evidences from motor disabled community (e.g., CP) using these alternative interfaces. The proposed interface is based on inertial sensors in order to characterize involuntary motion in terms of time, frequency and range of motion. This characterization is used to design a filtering technique that reduces the effect of involuntary motion on person-computer interaction. This paper presents a robust Kalman filter (RKF) design to facilitate fine motor control based on the previous characterization. The filter increases mouse pointer directivity and the target acquisition time is reduced by a factor of ten. The interface is validated with CP users who were unable to control the computer using other interfaces. The interface ENLAZA and the RKF enabled them to use the computer.


Assuntos
Paralisia Cerebral/fisiopatologia , Adulto , Algoritmos , Humanos , Software , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA