Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Pediatr Endocrinol Metab ; 36(1): 4-18, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36424806

RESUMO

OBJECTIVES: 46, XY difference/disorder of sex development (DSD) is a relatively uncommon group of heterogeneous disorders with varying degree of underandrogenization of male genitalia. Such patients should be approached systematically to reach an aetiological diagnosis. However, we lack, at present, a clinical practice guideline on diagnostic approach in 46, XY DSD from this part of the globe. Moreover, debate persists regarding the timing and cut-offs of different hormonal tests, performed in these cases. The consensus committee consisting of 34 highly experienced endocrinologists with interest and experience in managing DSD discussed and drafted a consensus statement on the diagnostic approach to 46, XY DSD focussing on relevant history, clinical examination, biochemical evaluation, imaging and genetic analysis. CONTENT: The consensus was guided by systematic reviews of existing literature followed by discussion. An initial draft was prepared and distributed among the members. The members provided their scientific inputs, and all the relevant suggestions were incorporated. The final draft was approved by the committee members. SUMMARY: The diagnostic approach in 46, XY DSD should be multidisciplinary although coordinated by an experienced endocrinologist. We recommend formal Karyotyping, even if Y chromosome material has been detected by other methods. Meticulous history taking and thorough head-to-toe examination should initially be performed with focus on external genitalia, including location of gonads. Decision regarding hormonal and other biochemical investigations should be made according to the age and interpreted according to age-appropriate norms Although LC-MS/MS is the preferred mode of steroid hormone measurements, immunoassays, which are widely available and less expensive, are acceptable alternatives. All patients with 46, XY DSD should undergo abdominopelvic ultrasonography by a trained radiologist. MRI of the abdomen and/or laparoscopy may be used to demonstrate the Mullerian structure and/or to localize the gonads. Genetic studies, which include copy number variation (CNV) or molecular testing of a candidate gene or next generation sequencing then should be ordered in a stepwise manner depending on the clinical, biochemical, hormonal, and radiological findings. OUTLOOK: The members of the committee believe that patients with 46, XY DSD need to be approached systematically. The proposed diagnostic algorithm, provided in the consensus statement, is cost effective and when supplemented with appropriate genetic studies, may help to reach an aetiological diagnosis in majority of such cases.


Assuntos
Transtorno 46,XY do Desenvolvimento Sexual , Transtornos do Desenvolvimento Sexual , Humanos , Masculino , Transtornos do Desenvolvimento Sexual/diagnóstico , Transtornos do Desenvolvimento Sexual/genética , Cromatografia Líquida , Variações do Número de Cópias de DNA , Espectrometria de Massas em Tandem , Transtorno 46,XY do Desenvolvimento Sexual/genética
3.
Oncogene ; 41(30): 3778-3790, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761036

RESUMO

Hepatocellular carcinoma (HCC) is one of the deadliest cancers. The retinoblastoma protein (RB1), a regulator of cell proliferation, is functionally inactivated in HCC by CYCLIN D/E-mediated phosphorylation. However, the mechanism of RB1-inactivation is unclear because only small percentages of HCCs exhibit amplification of CYCLIN D/E or mutations in the CDK-inhibitory genes. We show that FOXM1, which is overexpressed and critical for HCC, plays essential roles in inactivating RB1 and suppressing RB1-induced senescence of the HCC cells. Mechanistically, FOXM1 binds RB1 and DNMT3B to repress the expression of FOXO1, leading to a decrease in the levels of the CDK-inhibitors, creating an environment for phosphorylation and inactivation of RB1. Consistent with that, inhibition of FOXM1 causes increased expression of FOXO1 with consequent activation of RB1, leading to senescence of the HCC cells, in vitro and in vivo. Also, repression-deficient mutants of FOXM1 induce senescence that is blocked by depletion of RB1 or FOXO1. We provide evidence that human HCCs rely upon this FOXM1-FOXO1 axis for phosphorylation and inactivation of RB1. The observations demonstrate the existence of a new autoregulatory loop of RB1-inactivation in HCC involving a FOXM1-FOXO1 axis that is required for phosphorylation of RB1 and for aggressive progression of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Senescência Celular , Ciclina D/metabolismo , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
Cancer Res ; 82(13): 2458-2471, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35583996

RESUMO

The transcription factor Forkhead box M1 (FoxM1) is overexpressed in breast cancers and correlates with poor prognosis. Mechanistically, FoxM1 associates with CBP to activate transcription and with Rb to repress transcription. Although the activating function of FoxM1 in breast cancer has been well documented, the significance of its repressive activity is poorly understood. Using CRISPR-Cas9 engineering, we generated a mouse model that expresses FoxM1-harboring point mutations that block binding to Rb while retaining its ability to bind CBP. Unlike FoxM1-null mice, mice harboring Rb-binding mutant FoxM1 did not exhibit significant developmental defects. The mutant mouse line developed PyMT-driven mammary tumors that were deficient in lung metastasis, which was tumor cell-intrinsic. Single-cell RNA-seq of the tumors revealed a deficiency in prometastatic tumor cells and an expansion of differentiated alveolar type tumor cells, and further investigation identified that loss of the FoxM1/Rb interaction caused enhancement of the mammary alveolar differentiation program. The FoxM1 mutant tumors also showed increased Pten expression, and FoxM1/Rb was found to activate Akt signaling by repressing Pten. In human breast cancers, expression of FoxM1 negatively correlated with Pten mRNA. Furthermore, the lack of tumor-infiltrating cells in FoxM1 mutant tumors appeared related to decreases in pro-metastatic tumor cells that express factors required for infiltration. These observations demonstrate that the FoxM1/Rb-regulated transcriptome is critical for the plasticity of breast cancer cells that drive metastasis, identifying a prometastatic role of Rb when bound to FoxM1. SIGNIFICANCE: This work provides new insights into how the interaction between FoxM1 and Rb facilitates the evolution of metastatic breast cancer cells by altering the transcriptome.


Assuntos
Neoplasias da Mama , Proteína Forkhead Box M1/metabolismo , Fatores de Transcrição Forkhead , Animais , Neoplasias da Mama/patologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Feminino , Proteína Forkhead Box M1/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Transdução de Sinais , Transcrição Gênica
5.
Diabetes Ther ; 11(12): 2791-2827, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33025397

RESUMO

Diabetic kidney disease (DKD) occurs in approximately 20-40% of patients with type 2 diabetes mellitus. Patients with DKD have a higher risk of cardiovascular and all-cause mortality. Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers and antihyperglycemic drugs form the mainstay of DKD management and aim to restrict progression to more severe stages of DKD. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) control hyperglycemia by blocking renal glucose reabsorption in addition to preventing inflammation, thereby improving endothelial function and reducing oxidative stress; consequently, this class of prescription medicines is emerging as an important addition to the therapeutic armamentarium. The EMPA-REG OUTCOME, DECLARE TIMI 58, and CANVAS trials demonstrated the renoprotective effects of SGLT2i, such as restricting decline in glomerular filtration rate, in the progression of albuminuria, and in death due to renal causes. The renoprotection provided by SGLT2i was further confirmed in the CREDENCE study, which showed a 30% reduction in progression of chronic kidney disease, and in the DELIGHT study, which demonstrated a reduction in albuminuria with dapagliflozin compared with placebo (- 21.0%, confidence interval [CI] - 34.1 to - 5.2, p = 0.011). Furthermore, a meta-analysis demonstrated a reduced risk of dialysis, transplantation, or death due to kidney disease (relative risk 0.67; 95% CI 0.52-0.86; p = 0.0019) and a 45% risk reduction in worsening of renal function, end-stage renal disease, or renal death (hazard ratio 0.55, CI 0.48-0.64, p < 0.0001) with SGLT2i, irrespective of baseline estimated glomerular filtration rate. Thus, there is emerging evidence that SGLT2i may be used to curb the mortality and improve the quality of life in patients with DKD. However, clinicians need to effectively select candidates for SGLT2i therapy. In this consensus statement, we have qualitatively synthesized evidence demonstrating the renal effects of SGLT2i and proposed recommendations for optimal use of SGLT2i to effectively manage and delay progression of DKD.

6.
Oncogene ; 39(8): 1784-1796, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31740787

RESUMO

Cancers in the oral/head & neck region (HNSCC) are aggressive due to high incidence of recurrence and distant metastasis. One prominent feature of aggressive HNSCC is the presence of severely hypoxic regions in tumors and activation of hypoxia-inducible factors (HIFs). In this study, we report that the XPE gene product DDB2 (damaged DNA binding protein 2), a nucleotide excision repair protein, is upregulated by hypoxia. Moreover, DDB2 inhibits HIF1α in HNSCC cells. It inhibits HIF1α in both normoxia and hypoxia by reducing mRNA expression. Knockdown of DDB2 enhances the expression of angiogenic markers and promotes tumor growth in a xenograft model. We show that DDB2 binds to an upstream promoter element in the HIF1Α gene and promotes histone H3K9 trimethylation around the binding site by recruiting Suv39h1. Also, we provide evidence that DDB2 has a significant suppressive effect on expression of the endogenous markers of hypoxia that are also prognostic indicators in HNSCC. Together, these results describe a new mechanism of hypoxia regulation that opposes expression of HIF1Α mRNA and the hypoxia-response genes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Hipóxia Tumoral , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
7.
Mol Cancer Res ; 17(5): 1063-1074, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30814128

RESUMO

The forkhead box transcription factor FoxM1 is essential for hepatocellular carcinoma (HCC) development, and its overexpression coincides with poor prognosis. Here, we show that the mechanisms by which FoxM1 drives HCC progression involve overcoming the inhibitory effects of the liver differentiation gene FoxA2. First, the expression patterns of FoxM1 and FoxA2 in human HCC are opposite. We show that FoxM1 represses expression of FoxA2 in G1 phase. Repression of FoxA2 in G1 phase is important, as it is capable of inhibiting expression of the pluripotency genes that are expressed mainly in S-G2 phases. Using a transgenic mouse model for oncogenic Ras-driven HCC, we provide genetic evidence for a repression of FoxA2 by FoxM1. Conversely, FoxA2 inhibits expression of FoxM1 and inhibits FoxM1-induced tumorigenicity. Also, FoxA2 inhibits Ras-induced HCC progression that involves FoxM1. IMPLICATIONS: The observations provide strong genetic evidence for an opposing role of FoxM1 and FoxA2 in HCC progression. Moreover, FoxM1 drives high-grade HCC progression partly by inhibiting the hepatocyte differentiation gene FoxA2.


Assuntos
Carcinoma Hepatocelular/patologia , Proteína Forkhead Box M1/metabolismo , Fator 3-beta Nuclear de Hepatócito/metabolismo , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Transgênicos , Gradação de Tumores , Neoplasias Experimentais , Proteína do Retinoblastoma/metabolismo , DNA Metiltransferase 3B
8.
Oncotarget ; 9(78): 34708-34718, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30410671

RESUMO

DDB2 is a sensor of DNA damage and it plays an important role in Global Genomic Repair (GG-NER). Our previous studies show that DDB2 is involved in the regulation of metastasis in colon adenocarcinoma. Squamous Cell Carcinomas in the Oral/Head & Neck region (HNSCC) are particularly aggressive due to high incidence of recurrence and distant metastasis. In this study, we show that DDB2 expression is downregulated in advanced HNSCCs and loss of DDB2 expression coincides with reduced survival. Recent meta-analysis of gene expression data characterized the mesenchymal-type (EMT-type) as one most aggressive cancer cluster in HNSCC. Here, we report that DDB2 constitutively represses mRNA expression of the EMT- regulatory transcription factors SNAIL, ZEB1, and angiogenic factor VEGF in HNSCC cells. As a result, re-expression of DDB2 in metastatic cells reversed EMT with transcriptional upregulation of epithelial marker E-cadherin, and downregulation of mesenchymal markers N-cadherin, Vimentin, and Fibronectin. Interestingly, in a reverse assay, depletion of DDB2 in non-metastatic cells induced expression of the same EMT-regulatory transcription factors. TGFßs are major regulators of Snail and Zeb1, and we observed that DDB2 transcriptionally regulates expression of TGFB2 in HNSCC cells. Re-expression of DDB2 in mouse embryonic fibroblasts (MEFs) isolated from Ddb2 (-/-) knockout-mice resulted in repression of EMT-regulatory factors Zeb1, Snail and Tgfb2. Taken together, these results support the active role of DDB2 as a candidate suppressor of the EMT-process in HNSCC. Early detection leads to significantly higher survival in HNSCC and DDB2 expression in tumors can be a predictor of EMT progression.

9.
Sci Rep ; 8(1): 15850, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30374061

RESUMO

A correction has been published and is appended to both the HTML and PDF versions of this paper. The error has not been fixed in the paper.

10.
Cell Signal ; 51: 119-129, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30092353

RESUMO

RATIONALE: Forkhead box M1 (FoxM1) is a transcription factor that promotes cell proliferation by regulating a broad spectrum of genes that participate in cell cycle regulation, such as Cyclin B, CDC25B, and Aurora B Kinase. We have shown that hypoxia, a well-known stimulus for pulmonary hypertension (PH), induces FoxM1 in pulmonary artery smooth muscle cells (PASMC) in a HIF-dependent pathway, resulting in PASMC proliferation, while the suppression of FoxM1 prevents hypoxia-induced PASMC proliferation. However, the implications of FoxM1 in the development of PH remain less known. METHODS: We determined FoxM1 levels in the lung samples of idiopathic PAH (pulmonary arterial hypertension) (IPAH) patients and hypoxia-induced PH mice. We generated constitutive and inducible smooth muscle cell (SMC)-specific FoxM1 knockdown or knockout mice as well as FoxM1 transgenic mice which overexpress FoxM1, and exposed them to hypoxia (10% O2, 90% N2) or normoxia (Room air, 21% oxygen) for four weeks, and measured PH indices. We also isolated mouse PASMC (mPASMC) and mouse embryonic fibroblasts (MEF) from these mice to examine the cell proliferation and expression levels of SMC contractile proteins. RESULTS: We showed that in hypertensive human lungs or mouse lungs, FoxM1 levels were elevated. Constitutive knockout of FoxM1 in mouse SMC caused early lethality, whereas constitutive knockdown of FoxM1 in mouse SMC prevented hypoxia-induced PH and PASMC proliferation. Inducible knockout of FoxM1 in SMC reversed hypoxia-induced pulmonary artery wall remodeling in existing PH. Overexpression of FoxM1 enhanced hypoxia-induced pulmonary artery wall remodeling and right ventricular hypertrophy in mice. Alteration of FoxM1 status did not affect hypoxia-induced hypoxia-inducible factor (HIF) activity in mice. Knockout of FoxM1 decreased PASMC proliferation and induced expression of SMC contractile proteins and TGF-ß/Smad3 signaling. CONCLUSIONS: Our studies provide clear evidence that altered FoxM1 expression in PASMC contributes to PH and uncover a correlation between Smad3-dependent signaling in FoxM1-mediated proliferation and de-differentiation of PASMC.


Assuntos
Proteína Forkhead Box M1/fisiologia , Hipertensão Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células , Células Cultivadas , Proteínas Contráteis/metabolismo , Modelos Animais de Doenças , Feminino , Proteína Forkhead Box M1/genética , Regulação da Expressão Gênica , Humanos , Hipertrofia Ventricular Direita/metabolismo , Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/citologia , Artéria Pulmonar/citologia , Transdução de Sinais , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Remodelação Vascular
11.
Carcinogenesis ; 39(3): 318-326, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29228217

RESUMO

Arf, a well-established tumor suppressor, is either mutated or downregulated in a wide array of cancers. However, its role in hepatocellular carcinoma (HCC) progression is controversial. Conflicting observations have been published regarding its expression in HCC. In this study, we provide clear genetic evidence demonstrating a protective role of p19Arf in hepatocarcinogenesis. Using Ras-induced mouse model, we show that p19Arf deficiency accelerates progression of aggressive HCC in vivo. To investigate the role of p14ARF in human liver cancers, we analyzed its expression in human HCC using immunohistochemistry (IHC). We observe lack of nucleolar p14ARF in 43.02% of human HCC samples and that low expression of p14ARF strongly correlates with the early onset of HCC. Importantly, cirrhotic livers that did not progress to HCC harbor higher expression of the p14ARF protein in hepatocytes compared with that in cirrhotic livers with HCC. These results are significant because they suggest that nucleolar p14ARF can be used as early prognostic marker in chronic liver disease to reliably identify patients with high risk for developing liver cancer. Currently, there is no effective systemic therapy for advanced liver cancer; hence, more efficient patient screening and early detection of HCC would significantly contribute to the eradication of this devastating disease.


Assuntos
Carcinoma Hepatocelular/patologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Genes ras/genética , Neoplasias Hepáticas/patologia , Proteína Supressora de Tumor p14ARF/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma Hepatocelular/genética , Progressão da Doença , Feminino , Humanos , Cirrose Hepática/genética , Cirrose Hepática/patologia , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade
12.
Cancer Res ; 77(23): 6562-6575, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29021137

RESUMO

Deregulation of the Wnt/ß-catenin signaling pathway drives the development of colorectal cancer, but understanding of this pathway remains incomplete. Here, we report that the damage-specific DNA-binding protein DDB2 is critical for ß-catenin-mediated activation of RNF43, which restricts Wnt signaling by removing Wnt receptors from the cell surface. Reduced expression of DDB2 and RNF43 was observed in human hyperplastic colonic foci. DDB2 recruited EZH2 and ß-catenin at an upstream site in the Rnf43 gene, enabling functional interaction with distant TCF4/ß-catenin-binding sites in the intron of Rnf43 This novel activity of DDB2 was required for RNF43 function as a negative feedback regulator of Wnt signaling. Mice genetically deficient in DDB2 exhibited increased susceptibility to colon tumor development in a manner associated with higher abundance of the Wnt receptor-expressing cells and greater activation of the downstream Wnt pathway. Our results identify DDB2 as both a partner and regulator of Wnt signaling, with an important role in suppressing colon cancer development. Cancer Res; 77(23); 6562-75. ©2017 AACR.


Assuntos
Neoplasias do Colo/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Oncogênicas/metabolismo , Via de Sinalização Wnt/genética , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Ativação Enzimática , Células HCT116 , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Knockout , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores Wnt/metabolismo , Ubiquitina-Proteína Ligases , beta Catenina/metabolismo
14.
Clin Hypertens ; 23: 12, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28361007

RESUMO

BACKGROUND: Angiotensinogen (AGT) enzyme comprises a vital module of RAAS system that effectively controls the blood pressure and related cardiovascular functions. Ample association studies have reported the importance of AGT variants in cardiovascular and non-cardiovascular adversities. But lately, owing to the complexity of the many anomalies, the haplotype based examination of genetic variation that facilitates the identification of polymorphic sites which are located in the vicinity of the causative polymorphic site, gets greater appreciation. METHODS: In the present study, we have done genotype and haplotype analysis of AGT gene in reference to hypertension to confirm the association of the two in an Indian population. To accomplish this, we performed candidate SNPs analysis and construct possible haplotypes across the AGT promoter and gene region in 414 subjects (256 Hypertensive cases and 158 controls). RESULTS: We found four SNPs (rs11568020: A-152G and rs5050: A-20C in promoter; rs4762 and rs699 in exon2) and 3 haplotypes (H4, H7 and H8) that showed a stronger positive association with hypertension. The haplotype H2 was showing protective association with hypertension. CONCLUSION: The results of the present study confirmed and reestablished the role of AGT gene variants and their haplotypes in the causation of hypertension in Indian population and showed that haplotypes can provide stronger evidence of association.

15.
Sci Rep ; 7: 46017, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387346

RESUMO

FoxM1b is a cell cycle-regulated transcription factor, whose over-expression is a marker for poor outcome in cancers. Its transcriptional activation function requires phosphorylation by Cdk1 or Cdk2 that primes FoxM1b for phosphorylation by Plk1, which triggers association with the co-activator CBP. FoxM1b also possesses transcriptional repression function. It represses the mammary differentiation gene GATA3 involving DNMT3b and Rb. We investigated what determines the two distinct functions of FoxM1b: activation and repression. We show that Rb binds to the C-terminal activation domain of FoxM1b. Analyses with phospho-defective and phospho-mimetic mutants of FoxM1b identified a critical role of the Plk1 phosphorylation sites in regulating the binding of FoxM1b to Rb and DNMT3b. That is opposite of what was seen for the interaction of FoxM1b with CBP. We show that, in addition to GATA3, FoxM1b also represses the mammary luminal differentiation marker FoxA1 by promoter-methylation, and that is regulated by the Plk1 phosphorylation sites in FoxM1b. Our results show that the Plk1 phosphorylation sites in FoxM1b serve as a regulator for its repressor function, and they provide insights into how FoxM1b inhibits differentiation genes and activates proliferation genes during cancer progression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteína Forkhead Box M1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Proteína do Retinoblastoma/metabolismo , Sítios de Ligação , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Proteína Forkhead Box M1/química , Fator de Transcrição GATA3/genética , Humanos , Células MCF-7 , Mutação/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos , Sialoglicoproteínas/metabolismo , DNA Metiltransferase 3B , Quinase 1 Polo-Like
16.
Mol Biol Cell ; 28(1): 192-200, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28035050

RESUMO

Damaged DNA-binding protein 2 (DDB2), a nuclear protein, participates in both nucleotide excision repair and mRNA transcription. The transcriptional regulatory function of DDB2 is significant in colon cancer, as it regulates metastasis. To characterize the mechanism by which DDB2 participates in transcription, we investigated the protein partners in colon cancer cells. Here we show that DDB2 abundantly associates with XRCC5/6, not involving CUL4 and DNA-PKcs. A DNA-damaging agent that induces DNA double-stranded breaks (DSBs) does not affect the interaction between DDB2 and XRCC5. In addition, DSB-induced nuclear enrichment or chromatin association of XRCC5 does not involve DDB2, suggesting that the DDB2/XRCC5/6 complex represents a distinct pool of XRCC5/6 that is not directly involved in DNA break repair (NHEJ). In the absence of DNA damage, on the other hand, chromatin association of XRCC5 requires DDB2. We show that DDB2 recruits XRCC5 onto the promoter of SEMA3A, a DDB2-stimulated gene. Moreover, depletion of XRCC5 inhibits SEMA3A expression without affecting expression of VEGFA, a repression target of DDB2. Together our results show that DDB2 is critical for chromatin association of XRCC5/6 in the absence of DNA damage and provide evidence that XRCC5/6 are functional partners of DDB2 in its transcriptional stimulatory activity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Autoantígeno Ku/metabolismo , Cromatina/metabolismo , Cromatina/fisiologia , Dano ao DNA , DNA Helicases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica/genética , Células HCT116 , Humanos , Ligação Proteica , Semaforina-3A/metabolismo , Transcrição Gênica
18.
Mol Cell ; 58(5): 794-803, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25982117

RESUMO

G protein-coupled receptors (GPCRs) comprise the largest family of cell surface receptors, regulate a wide range of physiological processes, and are the major targets of pharmaceutical drugs. Canonical signaling from GPCRs is relayed to intracellular effector proteins by trimeric G proteins, composed of α, ß, and γ subunits (Gαßγ). Here, we report that G protein ß subunits (Gß) bind to DDB1 and that Gß2 targets GRK2 for ubiquitylation by the DDB1-CUL4A-ROC1 ubiquitin ligase. Activation of GPCR results in PKA-mediated phosphorylation of DDB1 at Ser645 and its dissociation from Gß2, leading to increase of GRK2 protein. Deletion of Cul4a results in cardiac hypertrophy in male mice that can be partially rescued by the deletion of one Grk2 allele. These results reveal a non-canonical function of the Gß protein as a ubiquitin ligase component and a mechanism of feedback regulation of GPCR signaling.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Animais , Proteínas de Ligação a DNA/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Knockout , Estabilidade Proteica , Proteólise , Ratos , Ratos Wistar , Transdução de Sinais
19.
J Hepatol ; 63(2): 429-36, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25828473

RESUMO

BACKGROUND & AIMS: Overexpression of FoxM1 correlates with poor prognosis in hepatocellular carcinoma (HCC). Moreover, the Ras-signaling pathway is found to be ubiquitously activated in HCC through epigenetic silencing of the Ras-regulators. We investigated the roles of FoxM1 in Ras-driven HCC, and on HCC cells with stem-like features. METHODS: We employed a transgenic mouse model that expresses the oncogenic Ras in the liver. That strain was crossed with a strain that harbor floxed alleles of FoxM1 and the MxCre gene that allows conditional deletion of FoxM1. FoxM1 alleles were deleted after development of HCC, and the effects on the tumors were analyzed. Also, FoxM1 siRNA was used in human HCC cell lines to determine its role in the survival of the HCC cells with stem cell features. RESULTS: Ras-driven tumors overexpress FoxM1. Deletion of FoxM1 inhibits HCC progression. There was increased accumulation of reactive oxygen species (ROS) in the FoxM1 deleted HCC cells. Moreover, FoxM1 deletion caused a disproportionate loss of the CD44+ and EpCAM+ HCC cells in the tumors. We show that FoxM1 directly activates expression of CD44 in human HCC cells. Moreover, the human HCC cells with stem cell features are addicted to FoxM1 for ROS-regulation and survival. CONCLUSION: Our results provide genetic evidence for an essential role of FoxM1 in the progression of Ras-driven HCC. In addition, FoxM1 is required for the expression of CD44 in HCC cells. Moreover, FoxM1 plays a critical role in the survival of the HCC cells with stem cell features by regulating ROS.


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular/genética , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Células-Tronco/patologia , Proteínas ras/genética , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/biossíntese , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prognóstico , Transdução de Sinais , Células-Tronco/metabolismo , Proteínas ras/biossíntese
20.
Nat Commun ; 6: 6471, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25753524

RESUMO

Despite recent advances in the cure rate of acute lymphoblastic leukaemia (ALL), the prognosis for patients with relapsed ALL remains poor. Here we identify FOXM1 as a candidate responsible for an aggressive clinical course. We show that FOXM1 levels peak at the pre-B-cell receptor checkpoint but are dispensable for normal B-cell development. Compared with normal B-cell populations, FOXM1 levels are 2- to 60-fold higher in ALL cells and are predictive of poor outcome in ALL patients. FOXM1 is negatively regulated by FOXO3A, supports cell survival, drug resistance, colony formation and proliferation in vitro, and promotes leukemogenesis in vivo. Two complementary approaches of pharmacological FOXM1 inhibition-(i) FOXM1 transcriptional inactivation using the thiazole antibiotic thiostrepton and (ii) an FOXM1 inhibiting ARF-derived peptide-recapitulate the findings of genetic FOXM1 deletion. Taken together, our data identify FOXM1 as a novel therapeutic target, and demonstrate feasibility of FOXM1 inhibition in ALL.


Assuntos
Antineoplásicos/farmacologia , Fatores de Transcrição Forkhead/antagonistas & inibidores , Regulação Leucêmica da Expressão Gênica , Peptídeos/síntese química , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Tioestreptona/farmacologia , Adulto , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linfócitos B/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Criança , Ensaios Clínicos como Assunto , Inibidor p16 de Quinase Dependente de Ciclina/química , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Forkhead Box M1 , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Camundongos , Peptídeos/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Transdução de Sinais , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...