Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Pain ; 14: 100139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927365

RESUMO

The excitatory and inhibitory interneurons of superficial laminae I-II of the spinal dorsal horn (SDH) receive and process pain-related information from the primary afferents and transmit it to the brain via the projection neurons. Thus, the interaction between excitatory and inhibitory SDH interneurons is crucial in determining the output from the spinal cord network. Disruption of this interaction in pathological conditions leads to increased SDH output to the higher brain centers, which could underlie pathological pain. Here, we examined whether the changes in the intrinsic SDH connectivity also occur with age, possibly underlying age-related increase in pain sensitivity. Using Vgat;tdTomato transgenic mouse line, we compared the spontaneous inhibitory postsynaptic currents (sIPSCs) in inhibitory tdTomato+ and excitatory tdTomato- interneurons between adult (3-5 m.o.) and aged (12-13 m.o.) mice. We demonstrate that in adult mice, the amplitude and frequency of the sIPSCs on the excitatory interneurons were significantly higher than on inhibitory interneurons. These differences were annulled in aged mice. Further, we show that in aged mice, excitatory neurons receive less inhibition than in adult mice. This could lead to overall disinhibition of the SDH network, which might underlie increased pain perception among the aged population.

2.
Pain ; 164(2): 443-460, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36149026

RESUMO

ABSTRACT: Inflammation modifies the input-output properties of peripheral nociceptive neurons such that the same stimulus produces enhanced nociceptive firing. This increased nociceptive output enters the superficial dorsal spinal cord (SDH), an intricate neuronal network composed largely of excitatory and inhibitory interneurons and a small percentage of projection neurons. The SDH network comprises the first central nervous system network integrating noxious information. Using in vivo calcium imaging and a computational approach, we characterized the responsiveness of the SDH network in mice to noxious stimuli in normal conditions and investigated the changes in SDH response patterns after acute burn injury-induced inflammation. We show that the application of noxious heat stimuli to the hind paw of naïve mice results in an overall increase in SDH network activity. Single-cell response analysis reveals that 70% of recorded neurons increase or suppress their activity, while ∼30% of neurons remain nonresponsive. After acute burn injury and the development of inflammatory hyperalgesia, application of the same noxious heat stimuli leads to the activation of previously nonresponding neurons and desuppression of suppressed neurons. We further demonstrate that an increase in afferent activity mimics the response of the SDH network to noxious heat stimuli under inflammatory conditions. Using a computational model of the SDH network, we predict that the changes in SDH network activity result in overall increased activity of excitatory neurons, amplifying the output from SDH to higher brain centers. We suggest that during acute local peripheral inflammation, the SDH network undergoes dynamic changes promoting hyperalgesia.


Assuntos
Hiperalgesia , Medula Espinal , Camundongos , Animais , Hiperalgesia/etiologia , Medula Espinal/fisiologia , Neurônios , Interneurônios , Inflamação
3.
Mol Brain ; 15(1): 30, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379308

RESUMO

CCCTC-binding factor (CTCF) is a regulator of chromatin organization and has direct effects on gene transcription. Mutations in CTCF have been identified in individuals with neurodevelopmental conditions. There are wide range of behaviors associated with these mutations, including intellectual disabilities, changes in temperament, and autism. Previous mice-model studies have identified roles for CTCF in excitatory neurons in specific behaviors, particularly in regards to learning and memory. However, the role of CTCF in inhibitory neurons is less well defined. In the current study, specific knockout of CTCF in parvalbumin-expressing neurons, a subset of inhibitory neurons, induced a specific behavioral phenotype, including locomotor abnormalities, anxiolytic behavior, and a decrease in social behavior. The anxiolytic and social abnormalities are detected before the onset of locomotor abnormalities. Immunohistochemical analysis revealed a disbalance in parvalbumin-expressing and somatostatin-expressing cells in these mice. Single nuclei RNA sequencing identified changes in gene expression in parvalbumin-expressing neurons that are specific to inhibitory neuronal identity and function. Electrophysiology analysis revealed an enhanced inhibitory tone in the hippocampal pyramidal neurons in knockout mice. These findings indicate that CTCF in parvalbumin-expressing neurons has a significant role in the overall phenotype of CTCF-associated neurodevelopmental deficits.


Assuntos
Neurônios , Parvalbuminas , Animais , Ansiedade , Fator de Ligação a CCCTC , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Parvalbuminas/metabolismo , Comportamento Social
4.
Front Cell Neurosci ; 15: 670998, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512263

RESUMO

Angelman syndrome (AS) is a debilitating neurogenetic disorder characterized by severe developmental delay, speech impairment, gait ataxia, sleep disturbances, epilepsy, and a unique behavioral phenotype. AS is caused by a microdeletion or mutation in the maternal 15q11-q13 chromosome region containing UBE3A gene. The hippocampus is one of the important brain regions affected in AS mice leading to substantial hippocampal-dependent cognitive and behavioral deficits. Recent studies have suggested an abnormal increase in the α1-Na/K-ATPase (α1-NaKA) in AS mice as the precipitating factor leading to the hippocampal deficits. A subsequent study showed that the hippocampal-dependent behavioral deficits occur as a result of altered calcium (Ca+2) dynamics in the CA1 pyramidal neurons (PNs) caused by the elevated α1-NaKA expression levels in the AS mice. Nonetheless, a causal link between hippocampal deficits and major behavioral phenotypes in AS is still obscure. Subiculum, a region adjacent to the hippocampal CA1 is the major output source of the hippocampus and plays an important role in the transfer of information from the CA1 region to the cortical areas. However, in spite of the robust hippocampal deficits and several known electrophysiological alterations in multiple brain regions in AS mice, the neuronal properties of the subicular neurons were never investigated in these mice. Additionally, subicular function is also implied in many neuropsychiatric disorders such as autism, schizophrenia, Alzheimer's disease, and epilepsy that share some common features with AS. Therefore, given the importance of the subiculum in these neuropsychiatric disorders and the altered electrophysiological properties of the hippocampal CA1 PNs projecting to the subiculum, we sought to examine the subicular PNs. We performed whole-cell recordings from dorsal subiculum of both WT and AS mice and found three distinct populations of PNs based on their ability to fire bursts or single action potentials following somatic current injection: strong bursting, weak bursting, and regular firing neurons. We found no overall differences in the distribution of these different subicular PN populations among AS and WT controls. However, the different cell types showed distinct alterations in their intrinsic membrane properties. Further, none of these populations were altered in their excitatory synaptic properties. Altogether, our study characterized the different subtypes of PNs in the subicular region of an AS mouse model.

5.
Neuropsychopharmacology ; 46(3): 654-664, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33214655

RESUMO

Angelman syndrome (AS) is a neurodevelopmental disorder caused by the loss of function of the maternal UBE3A gene. The hippocampus is one of the most prominently affected brain regions in AS model mice, manifesting in severe hippocampal-dependent memory and plasticity deficits. Previous studies in AS mice reported an elongated axon initial segment (AIS) in pyramidal neurons (PNs) of the hippocampal CA1 region. These were the first reports in mammals to show AIS elongation in vivo. Correspondingly, this AIS elongation was linked to enhanced expression of the α1 subunit of Na+/K+-ATPase (α1-NaKA). Recently, it was shown that selective pharmacological inhibition of α1-NaKA by marinobufagenin (MBG) in adult AS mice rescued the hippocampal-dependent deficits via normalizing their compromised activity-dependent calcium (Ca+2) dynamics. In the herein study, we showed that a chronic selective α1-NaKA inhibition reversed the AIS elongation in hippocampal CA1 PNs of adult AS mice, and differentially altered their excitability and intrinsic properties. Taken together, our study is the first to demonstrate in vivo structural plasticity of the AIS in a mammalian model, and further elaborates on the modulatory effects of elevated α1-NaKA levels in the hippocampus of AS mice.


Assuntos
Síndrome de Angelman , Segmento Inicial do Axônio , Adenosina Trifosfatases , Animais , Região CA1 Hipocampal , Hipocampo , Camundongos , Células Piramidais
6.
Prog Neurobiol ; 182: 101676, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31401139

RESUMO

Angelman syndrome (AS) is a neurodevelopmental disorder caused by the loss of function of the maternal copy of the UBE3A gene. Previous studies reported an increase in α1-Na/K-ATPase (α1-NaKA) expression in the AS hippocampus at the age of 2 weeks as the initial and isolated molecular alteration. This increase was further implied upon actuating much of the hippocampal-related deficits in an AS mouse model, although the underlying mechanism was never investigated. Here, we showed that enhanced α1-NaKA expression resulted in increased pump activity that reduced activity-dependent dendritic Ca2+ dynamics in the AS hippocampus, as well as selective inhibition of α1-NaKA by marinobufagenin (MBG) to normalize these aberrant Ca2+ dynamics. In addition, we demonstrated that selective α1-NaKA inhibition corrected impaired hippocampal synaptic plasticity and hippocampal-dependent cognitive deficits. Furthermore, we showed that the isolated increase in hippocampal α1-NaKA expression in AS mice at 2 weeks of age was accompanied by an unexpected enhancement in excitability. Altogether, our study implicates the modification of Ca2+ dynamics as one of the major underlying mechanisms by which enhanced α1-NaKA expression induces deleterious effects in the hippocampus of AS model mice. Finally, we propose a therapeutic approach for AS and possibly other neurodevelopmental disorders that entail aberrant NaKA expression or abnormal Ca2+ dynamics.


Assuntos
Síndrome de Angelman/metabolismo , Cálcio/metabolismo , Dendritos/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/fisiopatologia , Adenosina Trifosfatases/efeitos dos fármacos , Síndrome de Angelman/tratamento farmacológico , Animais , Modelos Animais de Doenças , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Masculino , Transtornos da Memória/tratamento farmacológico , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Ubiquitina-Proteína Ligases/metabolismo
7.
Mol Neurobiol ; 56(9): 5998-6016, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30706369

RESUMO

Angelman syndrome (AS) is a genetic disorder which entails autism, intellectual disability, lack of speech, motor deficits, and seizure susceptibility. It is caused by the lack of UBE3A protein expression, which is an E3-ubiquitin ligase. Despite AS equal prevalence in males and females, not much data on how sex affects the syndrome was reported. In the herein study, we thoroughly characterized many behavioral phenotypes of AS mice. The behavioral data acquired was analyzed with respect to sex. In addition, we generated a new mRNA sequencing dataset. We analyzed the coding transcriptome expression profiles with respect to the effects of genotype and sex observed in the behavioral phenotypes. We identified several neurobehavioral aspects, especially sensory perception, where AS mice either lack the male-to-female differences observed in wild-type littermates or even show opposed differences. However, motor phenotypes did not show male-to-female variation between wild-type (WT) and AS mice. In addition, by utilizing the mRNA sequencing, we identified genes and isoforms with expression profiles that mirror the sensory perception results. These genes are differentially regulated in the two sexes with inverse expression profiles in AS mice compared to WT littermates. Some of these are known pain-related and estrogen-dependent genes. The observed differences in sex-dependent neurobehavioral phenotypes and the differential transcriptome expression profiles in AS mice strengthen the evidence for molecular cross talk between Ube3a protein and sex hormone receptors or their elicited pathways. These interactions are essential for understanding Ube3a deletion effects, beyond its E3-ligase activity.


Assuntos
Síndrome de Angelman/genética , Caracteres Sexuais , Transcriptoma/genética , Síndrome de Angelman/complicações , Síndrome de Angelman/fisiopatologia , Animais , Ansiedade/complicações , Ansiedade/fisiopatologia , Comportamento Animal , Comportamento Exploratório , Medo , Feminino , Hipocampo/patologia , Hipocampo/fisiopatologia , Masculino , Memória , Camundongos Endogâmicos C57BL , Atividade Motora , Odorantes , Dor/complicações , Dor/genética , Dor/fisiopatologia , Percepção da Dor , Fenótipo , Aprendizagem Espacial , Temperatura
8.
Cell Rep ; 17(9): 2418-2430, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27880914

RESUMO

CCCTC-binding factor (CTCF) is an organizer of higher-order chromatin structure and regulates gene expression. Genetic studies have implicated mutations in CTCF in intellectual disabilities. However, the role of CTCF-mediated chromatin structure in learning and memory is unclear. We show that depletion of CTCF in postmitotic neurons, or depletion in the hippocampus of adult mice through viral-mediated knockout, induces deficits in learning and memory. These deficits in learning and memory at the beginning of adulthood are correlated with impaired long-term potentiation and reduced spine density, with no changes in basal synaptic transmission and dendritic morphogenesis and arborization. Cognitive disabilities are associated with downregulation of cadherin and learning-related genes. In addition, CTCF knockdown attenuates fear-conditioning-induced hippocampal gene expression of key learning genes and loss of long-range interactions at the BDNF and Arc loci. This study thus suggests that CTCF-dependent gene expression regulation and genomic organization are regulators of learning and memory.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas do Citoesqueleto/genética , Regulação da Expressão Gênica , Genoma , Memória/fisiologia , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Adenoviridae/metabolismo , Animais , Comportamento Animal , Sítios de Ligação , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caderinas/metabolismo , Cromatina/metabolismo , Condicionamento Psicológico , Proteínas do Citoesqueleto/metabolismo , Medo , Potenciação de Longa Duração , Transtornos da Memória/genética , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...