Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(33): 43350-43363, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39106360

RESUMO

We present a modular strategy to synthesize nanoparticle sensors equipped with dithiomaleimide-based, fluorescent molecular reporters capable of discerning minute changes in interparticle chemical environments based on fluorescence lifetime analysis. Three types of nanoparticles were synthesized with the aid of tailor-made molecular reporters, and it was found that protein nanoparticles exhibited greater sensitivity to changes in the core environment than polymer nanogels and block copolymer micelles. Encapsulation of the hydrophobic small-molecule drug paclitaxel (PTX) in self-reporting protein nanoparticles induced characteristic changes in fluorescence lifetime profiles, detected via time-resolved fluorescence spectroscopy. Depending on the mode of drug encapsulation, self-reporting protein nanoparticles revealed pronounced differences in their fluorescence lifetime signatures, which correlated with burst- vs diffusion-controlled release profiles observed in previous reports. Self-reporting nanoparticles, such as the ones developed here, will be critical for unraveling nanoparticle stability and nanoparticle-drug interactions, informing the future development of rationally engineered nanoparticle-based drug carriers.


Assuntos
Nanopartículas , Paclitaxel , Nanopartículas/química , Paclitaxel/química , Paclitaxel/farmacologia , Portadores de Fármacos/química , Espectrometria de Fluorescência , Micelas , Proteínas/química
2.
Macromol Rapid Commun ; : e2400349, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171381

RESUMO

Protein nanoparticles are an attractive class of materials for nanomedicine applications due to the intrinsic biocompatibility, biodegradability, and intrinsic functionality of their constituent proteins. Despite the clinical success of select protein nanoparticles, this class of nanocarriers remains understudied and underdeveloped compared to lipid and polymer nanoparticles due to challenges related to formulation optimization, large design space, and their structural complexity. In this work, a modular strategy for protein nanoparticle preparation based on the concept of photoreactive jetting is introduced. The process relies on continuous ultraviolet irradiation during electrohydrodynamic (EHD) jetting of protein solutions that contain a homobifunctional photocrosslinker. Protein nanoparticles exhibit nanogel-like architectures comprised of proteins that are linked via synthetic moieties. Compared to conventional protein nanoparticles, this method reduces nanoparticle processing times to minutes, rather than hours to days. The inclusion of an emissive structural motif as the molecular scaffold of the photocrosslinker is used to study the supramolecular architecture of the stable nanoparticles via time-resolved fluorescence spectroscopy.

3.
Beilstein J Nanotechnol ; 14: 351-361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959977

RESUMO

The potential of therapeutically loaded nanoparticles (NPs) has been successfully demonstrated during the last decade, with NP-mediated nonviral gene delivery gathering significant attention as highlighted by the broad clinical acceptance of mRNA-based COVID-19 vaccines. A significant barrier to progress in this emerging area is the wild variability of approaches reported in published literature regarding nanoparticle characterizations. Here, we provide a brief overview of the current status and outline important concerns regarding the need for standardized protocols to evaluate NP uptake, NP transfection efficacy, drug dose determination, and variability of nonviral gene delivery systems. Based on these concerns, we propose wide adherence to multimodal, multiparameter, and multistudy analysis of NP systems. Adoption of these proposed approaches will ensure improved transparency, provide a better basis for interlaboratory comparisons, and will simplify judging the significance of new findings in a broader context, all critical requirements for advancing the field of nonviral gene delivery.

4.
Pharm Res ; 40(3): 749-764, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36635487

RESUMO

INTRODUCTION: Oral squamous cell carcinoma (OSCC), is associated with high morbidity and mortality. Preemptive interventions have been postulated to provide superior therapeutic options, but their implementation has been restricted by the availability of broadly applicable local delivery systems. METHODS: We address this challenge by engineering a delivery vehicle, Janus nanoparticles (JNP), that combine the dual mucoadhesive properties of a first cationic chitosan compartment with a second hydrophobic poly(lactide-co-glycolide) release compartment. JNP are designed to avoid rapid mucus clearance while ensuring stable loading and controlled release of the IL-6 receptor antagonist, tocilizumab (TCZ). RESULTS: The JNP featured defined and monodispersed sizes with an average diameter of 327 nm and a PDI of 0.245, high circularities above 0.90 and supported controlled release of TCZ and effective internalization by oral keratinocytes. TCZ released from JNP retained its biological activity and effectively reduced both, soluble and membrane-bound IL-6Rα (71% and 50%). In full-thickness oral mucosal explants, 76% of the JNP breached the stratum corneum and in 41% were observed in the basal cell layer indicating excellent mucopenetrating properties. When tested in an aggressive OSCC xenograft model, TCZ-loaded JNP showed high levels of xenograft inhibition and outperformed all control groups with respect to inhibition of tumor cell proliferation, reduction in tumor size and reduced expression of the proto-oncogene ERG. CONCLUSION: By combining critically required, yet orthogonal properties within the same nanoparticle design, the JNP in this study, demonstrate promise as precision delivery platforms for intraoral field-coverage chemoprevention, a vastly under-researched area of high clinical importance.


Assuntos
Carcinoma de Células Escamosas , Quimioprevenção , Neoplasias Bucais , Nanopartículas Multifuncionais , Humanos , Preparações de Ação Retardada , Portadores de Fármacos/química , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/prevenção & controle , Nanopartículas/química , Anticarcinógenos
5.
Langmuir ; 38(18): 5603-5616, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35446569

RESUMO

Nanoparticle-based delivery of therapeutics to the brain has had limited clinical impact due to challenges crossing the blood-brain barrier (BBB). Certain cells, such as monocytes, possess the ability to migrate across the BBB, making them attractive candidates for cell-based brain delivery strategies. In this work, we explore nanoparticle design parameters that impact both monocyte association and monocyte-mediated BBB transport. We use electrohydrodynamic jetting to prepare nanoparticles of varying sizes, compositions, and elasticity to address their impact on uptake by THP-1 monocytes and permeation across the BBB. An in vitro human BBB model is developed using human cerebral microvascular endothelial cells (hCMEC/D3) for the assessment of migration. We compare monocyte uptake of both polymeric and synthetic protein nanoparticles (SPNPs) of various sizes, as well as their effect on cell migration. SPNPs (human serum albumin/HSA or human transferrin/TF) are shown to promote increased monocyte-mediated transport across the BBB over polymeric nanoparticles. TF SPNPs (200 nm) associate readily, with an average uptake of 138 particles/cell. Nanoparticle loading is shown to influence the migration of THP-1 monocytes. The migration of monocytes loaded with 200 nm TF and 200 nm HSA SPNPs was 2.3-fold and 2.1-fold higher than that of an untreated control. RNA-seq analysis after TF SPNP treatment suggests that the upregulation of several migration genes may be implicated in increased monocyte migration (ex. integrin subunits α M and α L). Integrin ß 2 chain combines with either integrin subunit α M chain or integrin subunit α L chain to form macrophage antigen 1 and lymphocyte function-associated antigen 1 integrins. Both products play a pivotal role in the transendothelial migration cascade. Our findings highlight the potential of SPNPs as drug and/or gene delivery platforms for monocyte-mediated BBB transport, especially where conventional polymer nanoparticles are ineffective or otherwise not desirable.


Assuntos
Monócitos , Nanopartículas , Células Endoteliais/metabolismo , Humanos , Integrinas/metabolismo , Migração Transendotelial e Transepitelial , Transferrina/metabolismo
6.
Beilstein J Nanotechnol ; 13: 274-283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35330645

RESUMO

Nanoparticles are frequently pursued as drug delivery carriers due to their potential to alter the pharmacological profiles of drugs, but their broader utility in nanomedicine hinges upon exquisite control of critical nanoparticle properties, such as shape, size, or monodispersity. Electrohydrodynamic (EHD) jetting is a probate method to formulate synthetic protein nanoparticles (SPNPs), but a systematic understanding of the influence of crucial processing parameters, such as protein composition, on nanoparticle morphologies is still missing. Here, we address this knowledge gap by evaluating formulation trends in SPNPs prepared by EHD jetting based on a series of carrier proteins and protein blends (hemoglobin, transferrin, mucin, or insulin). In general, blended SPNPs presented uniform populations with minimum diameters between 43 and 65 nm. Size distributions of as-jetted SPNPs approached monodispersity as indicated by polydispersity indices (PDISEM) ranging from 0.11-0.19. Geometric factor analysis revealed high circularities (0.82-0.90), low anisotropy (<1.45) and excellent roundness (0.76-0.89) for all SPNPs prepared via EHD jetting. Tentatively, blended SPNPs displayed higher circularity and lower anisotropy, as compared to single-protein SPNPs. Secondary statistical analysis indicated that blended SPNPs generally present combined features of their constituents, with some properties driven by the dominant protein constituent. Our study suggests SPNPs made from blended proteins can serve as a promising drug delivery carrier owing to the ease of production, the composition versatility, and the control over their size, shape and dispersity.

7.
Macromol Rapid Commun ; 41(23): e2000425, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32974989

RESUMO

Protein nanoparticles are a promising approach for nanotherapeutics, as proteins combine versatile chemical and biological function with controlled biodegradability. In this work, the development of an adaptable synthesis method is presented for synthetic protein nanoparticles (SPNPs) based on reactive electrojetting. In contrast to past work with electrohydrodynamic cojetting using inert polymers, the jetting solutions are comprised of proteins and chemically activated macromers, designed to react with each other during the processing step, to form insoluble nanogel particles. SPNPs made from a variety of different proteins, such as transferrin, insulin, or hemoglobin, are stable and uniform under physiological conditions and maintain monodisperse sizes of around 200 nm. SPNPs comprised of transferrin and a disulfide containing macromer are stimuli-responsive, and serve as markers of oxidative stress within HeLa cells. Beyond isotropic SPNPs, bicompartmental nanoparticles containing human serum albumin and transferrin in two distinct hemispheres are prepared via reactive electrojetting. This novel platform provides access to a novel class of versatile protein particles with nanoscale architectures that i) can be made from a variety of proteins and macromers, ii) have tunable biological responses, and iii) can be multicompartmental, a prerequisite for controlled release of multiple drugs.


Assuntos
Nanopartículas , Polímeros , Células HeLa , Humanos
8.
Biomaterials ; 98: 53-63, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27179433

RESUMO

Nanoparticles (NPs) play expanding roles in biomedical applications including imaging and therapy, however, their long-term fate and clearance profiles have yet to be fully characterized in vivo. NP delivery via the airway is particularly challenging, as the clearance may be inefficient and lung immune responses complex. Thus, specific material design is required for cargo delivery and quantitative, noninvasive methods are needed to characterize NP pharmacokinetics. Here, biocompatible poly(acrylamidoethylamine)-b-poly(dl-lactide) block copolymer-based degradable, cationic, shell-cross-linked knedel-like NPs (Dg-cSCKs) were employed to transfect plasmid DNA. Radioactive and optical beacons were attached to monitor biodistribution and imaging. The preferential release of cargo in acidic conditions provided enhanced transfection efficiency compared to non-degradable counterparts. In vivo gene transfer to the lung was correlated with NP pharmacokinetics by radiolabeling Dg-cSCKs and performing quantitative biodistribution with parallel positron emission tomography and Cerenkov imaging. Quantitation of imaging over 14 days corresponded with the pharmacokinetics of NP movement from the lung to gastrointestinal and renal routes, consistent with predicted degradation and excretion. This ability to noninvasively and accurately track NP fate highlights the advantage of incorporating multifunctionality into particle design.


Assuntos
Luminescência , Pulmão/metabolismo , Nanopartículas/química , Tomografia por Emissão de Pósitrons , Transfecção/métodos , Animais , DNA/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Radioisótopos do Iodo , Camundongos , Imagem Multimodal , Nanopartículas/ultraestrutura , Plasmídeos/metabolismo , Soluções , Distribuição Tecidual
9.
Macromolecules ; 49(2): 653-662, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-27065494

RESUMO

Block copolymer micelles have been prepared with a dithiomaleimide (DTM) fluorophore located in either the core or shell. Poly(triethylene glycol acrylate)-b-poly(tert-butyl acrylate) (P(TEGA)-b-P(tBA)) was synthesized by RAFT polymerization, with a DTM-functional acrylate monomer copolymerized into either the core forming P(tBA) block or the shell forming P(TEGA) block. Self-assembly by direct dissolution afforded spherical micelles with Rh of ca. 35 nm. Core-labeled micelles (CLMs) displayed bright emission (Φf = 17%) due to good protection of the fluorophore, whereas shell-labeled micelles (SLMs) had lower efficiency emission due to collisional quenching in the solvated corona. The transition from micelles to polymer unimers upon dilution could be detected by measuring the emission intensity of the solutions. For the core-labeled micelles, the fluorescence lifetime was also responsive to the supramolecular state, the lifetime being significantly longer for the micelles (τAv,I = 19 ns) than for the polymer unimers (τAv,I = 9 ns). The core-labeled micelles could also self-report on the presence of a fluorescent hydrophobic guest molecule (Nile Red) as a result of Förster resonance energy transfer (FRET) between the DTM fluorophore and the guest. The sensitivity of the DTM fluorophore to its environment therefore provides a simple handle to obtain detailed structural information for the labeled polymer micelles. A case will also be made for the application superiority of core-labeled micelles over shell-labeled micelles for the DTM fluorophore.

10.
Acta Biomater ; 41: 247-52, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27090588

RESUMO

UNLABELLED: In contrast to modification with conventional PEO-silanes (i.e. no siloxane tether), silicones with dramatically enhanced protein resistance have been previously achieved via bulk-modification with poly(ethylene oxide) (PEO)-silane amphiphiles α-(EtO)3Si(CH2)2-oligodimethylsiloxane13-block-PEOn-OCH3 when n=8 and 16 but not when n=3. In this work, their efficacy was evaluated in terms of optimal PEO-segment length and minimum concentration required in silicone. For each PEO-silane amphiphile (n=3, 8, and 16), five concentrations (5, 10, 25, 50, and 100µmol per 1g silicone) were evaluated. Efficacy was quantified in terms of the modified silicones' abilities to undergo rapid, water-driven surface restructuring to form hydrophilic surfaces as well as resistance to fibrinogen adsorption. Only n=8 and 16 were effective, with a lower minimum concentration in silicone required for n=8 (10µmol per 1g silicone) versus n=16 (25µmol per 1g silicone). STATEMENT OF SIGNIFICANCE: Silicone is commonly used for implantable medical devices, but its hydrophobic surface promotes protein adsorption which leads to thrombosis and infection. Typical methods to incorporate poly(ethylene oxide) (PEO) into silicones have not been effective due to the poor migration of PEO to the surface-biological interface. In this work, PEO-silane amphiphiles - comprised of a siloxane tether (m=13) and variable PEO segment lengths (n=3, 8, 16) - were blended into silicone to improve its protein resistance. The efficacy of the amphiphiles was determined to be dependent on PEO length. With the intermediate PEO length (n=8), water-driven surface restructuring and resulting protein resistance was achieved with a concentration of only 1.7wt%.


Assuntos
Fibrinogênio/química , Polietilenoglicóis/química , Silanos/química , Tensoativos/química , Adsorção , Humanos , Silicones/química , Propriedades de Superfície , Água/química
11.
Chemistry ; 22(7): 2396-405, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26762191

RESUMO

Linearly arranged metal atoms that are embedded in discrete molecules have fascinated scientists across various disciplines for decades; this is attributed to their potential use in microelectronic devices on a submicroscopic scale. Luminescent oligonuclear Group 11 metal complexes are of particular interest for applications in molecular light-emitting devices. Herein, we describe the synthesis and characterization of a rare, homoleptic, and neutral linearly arranged tetranuclear Cu(I) complex that is helically bent, thus representing a molecular coil in the solid state. This tetracuprous arrangement dimerizes into a unique octanuclear assembly bearing a linear array of six Cu(I) centers with two additional bridging cuprous ions that constitute a central pseudo-rhombic Cu(I) 4 cluster. The crystal structure determinations of both complexes reveal close d(10) ⋅⋅⋅d(10) contacts between all cuprous ions that are adjacent to each other. The dynamic behavior in solution, DFT calculations, and the luminescence properties of these remarkable complexes are also discussed.

12.
Polym Adv Technol ; 27(2): 195-203, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30034202

RESUMO

Shape memory polymer (SMP) foams have been developed for use in neurovascular occlusion applications. These materials are predominantly polyurethanes that are known for their biocompatibility and tunable properties. However, these polymers inherently lack X-ray visibility, which is a significant challenge for their use as implantable materials. Herein, low density, highly porous shape memory polyurethane foams were developed with tungsten nanoparticles dispersed into the foam matrix, at increasing concentrations, to serve as a radiopaque agent. Utilizing X-ray fluoroscopy sufficient visibility of the foams at small geometries was observed. Thermal characterization of the foams indicated altered thermal response and delayed foam actuation with increasing nanoparticle loading (because of restricted network mobility). Mechanical testing indicated decreased toughness and strength for higher loading because of disruption of the SMP matrix. Overall, filler addition imparted x-ray visibility to the SMP foams and allowed for tuned control of the transition temperature and actuation kinetics for the material.

14.
J Am Chem Soc ; 137(5): 2056-66, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25629952

RESUMO

Nanomaterials have great potential to offer effective treatment against devastating diseases by providing sustained release of high concentrations of therapeutic agents locally, especially when the route of administration allows for direct access to the diseased tissues. Biodegradable polyphosphoester-based polymeric micelles and shell cross-linked knedel-like nanoparticles (SCKs) have been designed from amphiphilic block-graft terpolymers, PEBP-b-PBYP-g-PEG, which effectively incorporate high concentrations of paclitaxel (PTX). Well-dispersed nanoparticles physically loaded with PTX were prepared, exhibiting desirable physiochemical characteristics. Encapsulation of 10 wt% PTX, into either micelles or SCKs, allowed for aqueous suspension of PTX at concentrations up to 4.8 mg/mL, as compared to <2.0 µg/mL for the aqueous solubility of the drug alone. Drug release studies indicated that PTX released from these nanostructures was defined through a structure-function relationship, whereby the half-life of sustained PTX release was doubled through cross-linking of the micellar structure to form SCKs. In vitro, physically loaded micellar and SCK nanotherapeutics demonstrated IC50 values against osteosarcoma cell lines, known to metastasize to the lungs (CCH-OS-O and SJSA), similar to the pharmaceutical Taxol formulation. Evaluation of these materials in vivo has provided an understanding of the effects of nanoparticle structure-function relationships on intratracheal delivery and related biodistribution and pharmacokinetics. Overall, we have demonstrated the potential of these novel nanotherapeutics toward future sustained release treatments via administration directly to the sites of lung metastases of osteosarcoma.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Paclitaxel/química , Polietilenoglicóis/química , Polímeros/química , Alcinos/química , Animais , Azidas/química , Neoplasias Ósseas/patologia , Catálise , Linhagem Celular Tumoral , Cobre/química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Ésteres , Meia-Vida , Humanos , Interações Hidrofóbicas e Hidrofílicas , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Micelas , Modelos Moleculares , Conformação Molecular , Osteossarcoma/patologia , Polímeros/metabolismo , Polímeros/farmacocinética , Distribuição Tecidual
15.
Nanoscale ; 7(6): 2265-70, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25573163

RESUMO

In this study, a new type of degradable polyphosphoester-based polymeric nanoparticle, capable of carrying silver cations via interactions with alkyne groups, has been developed as a potentially effective and safe treatment for lung infections. It was found that up to 15% (w/w) silver loading into the nanoparticles could be achieved, consuming most of the pendant alkyne groups along the backbone, as revealed by Raman spectroscopy. The well-defined Ag-loaded nanoparticles released silver in a controlled and sustained manner over 5 days, and displayed enhanced in vitro antibacterial activities against cystic fibrosis-associated pathogens and decreased cytotoxicity to human bronchial epithelial cells, in comparison to silver acetate.


Assuntos
Antibacterianos/química , Infecções Bacterianas/tratamento farmacológico , Materiais Biocompatíveis/química , Pneumopatias/tratamento farmacológico , Pneumopatias/microbiologia , Nanopartículas Metálicas/química , Prata/química , Acetatos/química , Brônquios/citologia , Cátions , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Células Epiteliais/citologia , Humanos , Micelas , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Nanotecnologia , Polímeros/química , Compostos de Prata/química , Solubilidade , Análise Espectral Raman , Água/química
16.
J Appl Polym Sci ; 132(23)2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29479115

RESUMO

Three microparticle additives, tungsten (W), zirconium oxide (ZrO2), and barium sulfate (BaSO4) were selected to enhance the radio-opacity in shape memory polymer (SMP) foam biomaterials. The addition of filler causes no significant alterations of glass transition temperatures, density of the materials increases, pore diameter decreases, and total volume recovery decreases from approximately 70 times in unfilled foams to 20 times (4% W and 10% ZrO2). The addition of W increases time to recovery; ZrO2 causes little variation in time to shape recovery; BaSO4 increases the time to recovery. On a 2.00 mean X-ray density (mean X.D.) scale, a GDC coil standard has a mean X.D. of 0.62; 4% W enhances the mean X.D. to 1.89, 10% ZrO2 to 1.39 and 4% BaSO4 to 0.74. Radio-opacity enhancing additives could be used to produce SMP foams with controlled shape memory kinetics, low density, and enhanced X-ray opacity for medical materials.

17.
ACS Macro Lett ; 4(5): 505-510, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35596303

RESUMO

An antibiofouling polymer coating, combined with both zwitterionic and amphiphilic features, is engineered by a two-step modification of a commodity polymer. The surface properties of the resultant polymer coating can be easily tuned by varying the extent of cross-linking in the network. Higher antibiofouling efficiency was observed for these surfaces vs. an elastomeric polydimethylsiloxane standard (Sylgard 184) against the adsorption of biomacromolecules and a marine fouling organism (Ulva zoospores) has been demonstrated. This design establishes a platform for the achievement of functionalized amphiphilic zwitterionic copolymers from relatively inexpensive starting materials via simple chemical manipulations.

18.
J Mater Chem B ; 2(46): 8123-8130, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25485113

RESUMO

A multi-responsive triblock hydrogelator oligo(dl-allylglycine)-block-poly(ethylene glycol)-block-oligo(dl-allylglycine) (ODLAG-b-PEG-b-ODLAG) was synthesized facilely by ring-opening polymerization (ROP) of DLAG N-carboxyanhydride (NCA) with a diamino-terminated PEG as the macroinitiator. This system exhibited heat-induced sol-to-gel transitions and either sonication- or enzyme-induced gel-to-sol transitions. The ß-sheeting of the oligopeptide segments was confirmed by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and wide-angle X-ray scattering (WAXS). The ß-sheets further displayed tertiary ordering into fibrillar structures that, in turn generated a porous and interconnected hydrogel matrix, as observed via transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The reversible macroscopic sol-to-gel transitions triggered by heat and gel-to-sol transitions triggered by sonication were correlated with the transformation of nanostructural morphologies, with fibrillar structures observed in gel and spherical aggregates in sol, respectively. The enzymatic breakdown of the hydrogels was also investigated. This allyl-functionalized hydrogelator can serve as a platform for the design of smart hydrogels, appropriate for expansion into biological systems as bio-functional and bio-responsive materials.

19.
Macromolecules ; 47(20): 7109-7117, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25364040

RESUMO

The photophysical and mechanical properties of novel poly(carbonate-amide)s derived from two biorenewable resources, ferulic acid (FA) and l-tyrosine ethyl ester, were evaluated in detail. From these two bio-based precursors, a series of four monomers were generated (having amide and/or carbonate coupling units with remaining functionalities to allow for carbonate formation) and transformed to a series of four poly(carbonate-amide)s. The simplest monomer, which was biphenolic and was obtained in a single amidation synthetic step, displayed bright, visible fluorescence that was twice brighter than FA. Multidimensional fluorescence spectroscopy of the polymers in solution highlighted the strong influence that regioselectivity and the degree of polymerization have on their photophysical properties. The regiochemistry of the system had little effect on the wettability, surface free energy, and Young's modulus (ca. 2.5 GPa) in the solid state. Confocal imaging of solvent-cast films of each polymer revealed microscopically flat surfaces with fluorescent emission deep into the visible region. Fortuitously, one of the two regiorandom polymers (obtainable from the biphenolic monomer in only an overall two synthetic steps from FA and l-tyrosine ethyl ester) displayed the most promising fluorescent properties both in the solid state and in solution, allowing for the possibility of translating this system as a self-reporting or imaging agent in future applications. To further evaluate the potential of this polymer as a biodegradable material, hydrolytic degradation studies at different pH values and temperatures were investigated. Additionally, the antioxidant properties of the degradation products of this polymer were compared with its biphenolic monomer and FA.

20.
ACS Appl Mater Interfaces ; 6(21): 19265-74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25329934

RESUMO

Synthesis of terpolymer coatings composed of hyperbranched fluoropolymers cross-linked with bisamino-propyl poly(ethylene glycol) and bisamino-propyl polydimethylsiloxane (PDMS) was performed to generate antibiofouling surfaces. Nanoscale imaging and surface spectroscopy confirmed that this system possessed complex surface topographies and chemical compositions. Surface complexity was determined to be due to molecular interactions, phase segregation, and compositional gradients arising between the three components. A clear difference in surface behavior was observable before and after exposure to water. Antibiofouling characteristics were investigated by bovine serum albumin (BSA) adsorption studies; the terpolymer coating displayed a 60% greater resistance to protein adsorption in comparison to the fouling of a commercial antibiofouling silicone coating. The unique surface topography, topology, and chemical heterogeneity expressed at a variety of scales provide a robust regime for the generation of hardy, complex surfaces known to incorporate characteristics appropriate for antibiofouling applications. Thorough assessment of thermal responses and mechanical properties in relevant environments demonstrated a formulation platform immediately appropriate for consideration in marine and in vivo applications.


Assuntos
Materiais Revestidos Biocompatíveis/química , Dimetilpolisiloxanos/química , Corantes Fluorescentes/química , Polietilenoglicóis/química , Adsorção , Animais , Bovinos , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA