Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 355(6332): 1433-1436, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28360329

RESUMO

Aging is characterized by progressive loss of physiological and cellular functions, but the molecular basis of this decline remains unclear. We explored how aging affects transcriptional dynamics using single-cell RNA sequencing of unstimulated and stimulated naïve and effector memory CD4+ T cells from young and old mice from two divergent species. In young animals, immunological activation drives a conserved transcriptomic switch, resulting in tightly controlled gene expression characterized by a strong up-regulation of a core activation program, coupled with a decrease in cell-to-cell variability. Aging perturbed the activation of this core program and increased expression heterogeneity across populations of cells in both species. These discoveries suggest that increased cell-to-cell transcriptional variability will be a hallmark feature of aging across most, if not all, mammalian tissues.


Assuntos
Envelhecimento/genética , Envelhecimento/imunologia , Linfócitos T CD4-Positivos/imunologia , Memória Imunológica/genética , Transcriptoma , Animais , Senescência Celular/genética , Senescência Celular/imunologia , Variação Genética , Ativação Linfocitária/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/metabolismo , Análise de Sequência de RNA , Análise de Célula Única
2.
Elife ; 52016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27855777

RESUMO

Most human aneuploidies originate maternally, due in part to the presence of highly stringent checkpoints during male meiosis. Indeed, male sterility is common among aneuploid mice used to study chromosomal abnormalities, and male germline transmission of exogenous DNA has been rarely reported. Here we show that, despite aberrant testis architecture, males of the aneuploid Tc1 mouse strain produce viable sperm and transmit human chromosome 21 to create aneuploid offspring. In these offspring, we mapped transcription, transcriptional initiation, enhancer activity, non-methylated DNA, and transcription factor binding in adult tissues. Remarkably, when compared with mice derived from female passage of human chromosome 21, the chromatin condensation during spermatogenesis and the extensive epigenetic reprogramming specific to male germline transmission resulted in almost indistinguishable patterns of transcriptional deployment. Our results reveal an unexpected tolerance of aneuploidy during mammalian spermatogenesis, and the surprisingly robust ability of mouse developmental machinery to accurately deploy an exogenous chromosome, regardless of germline transmission.


Assuntos
Cromossomos Humanos/metabolismo , Análise Citogenética , Células Germinativas/fisiologia , Meiose , Transcrição Gênica , Animais , Humanos , Masculino , Camundongos
3.
Mol Pharmacol ; 69(2): 608-17, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16258073

RESUMO

Although protein scaffolding complexes compartmentalize protein kinase A (PKA) and phosphodiesterases to optimize cAMP signaling, adenylyl cyclases, the sources of cAMP, have been implicated in very few direct protein interactions. The N termini of adenylyl cyclases are highly divergent, which hints at isoform-specific interactions. Indeed, the Ca(2+)-sensitive adenylyl cyclase 8 (AC8) contains a Ca(2+)/calmodulin binding site on the N terminus that is essential for stimulation of activity by the capacitative entry of Ca(2+) in the intact cell. Here, we have used the N terminus of AC8 as a bait in a yeast two-hybrid screen of a human embryonic kidney (HEK) 293 cell cDNA library and identified the catalytic subunit of the serine/threonine protein phosphatase 2A (PP2A(C)) as a binding partner. Confirming the highly specific nature of this novel interaction, glutathione-S-transferase fusion proteins containing the full-length N terminus of AC8 affinity precipitated catalytically active PP2A(C) from both HEK293 and mouse forebrain membranes-the latter a normal source of AC8. The scaffolding subunit of PP2A (PP2A(A); 65 kDa) was also precipitated by the N terminus of AC8, indicating that AC8 may occur in a complex with the PP2A core dimer. The interaction between the N terminus of AC8 and PP2A(C) was antagonized by Ca(2+)/calmodulin. However, PP2A(C) and Ca(2+)/calmodulin did not share identical binding specificities in the N terminus of AC8. PKA-mediated phosphorylation did not influence either calmodulin or PP2A(C) association with AC8. In addition, both PP2A(C) and AC8 occurred in lipid rafts. These findings are the first demonstration of an association between adenylyl cyclase and any downstream element of cAMP signaling.


Assuntos
Adenilil Ciclases/metabolismo , Domínio Catalítico , Fosfoproteínas Fosfatases/metabolismo , Adenilil Ciclases/análise , Sequência de Aminoácidos/genética , Animais , Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Microdomínios da Membrana/enzimologia , Camundongos , Fosfoproteínas Fosfatases/análise , Fosforilação , Prosencéfalo/enzimologia , Mapeamento de Interação de Proteínas , Proteína Fosfatase 2
4.
J Biol Chem ; 277(19): 16814-22, 2002 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-11877433

RESUMO

The MCK1 gene of Saccharomyces cerevisiae encodes a protein kinase homologous to metazoan glycogen synthase kinase-3. Previous studies implicated Mck1p in negative regulation of pyruvate kinase. In this study we find that purified Mck1p does not phosphorylate pyruvate kinase, suggesting that the link is indirect. We find that purified Tpk1p, a cAMP-dependent protein kinase catalytic subunit, phosphorylates purified pyruvate kinase in vitro, and that loss of the cAMP-dependent protein kinase regulatory subunit, Bcy1p, increases pyruvate kinase activity in vivo. We find that purified Mck1p inhibits purified Tpk1p in vitro, in the presence or absence of Bcy1p. Mck1p must be catalytically active to inhibit Tpk1p, but Mck1p does not phosphorylate this target. We find that abolition of Mck1p autophosphorylation on tyrosine prevents the kinase from efficiently phosphorylating exogenous substrates, but does not block its ability to inhibit Tpk1p in vitro. We find that this mutant form of Mck1p appears to retain the ability to negatively regulate cAMP-dependent protein kinase in vivo. We propose that Mck1p, in addition to phosphorylating some target proteins, also acts by a separate, novel mechanism: autophosphorylated Mck1p binds to and directly inhibits, but does not phosphorylate, the catalytic subunits of cAMP-dependent protein kinase.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Encéfalo/metabolismo , Catálise , Domínio Catalítico , Bovinos , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , AMP Cíclico/metabolismo , Quinase 3 da Glicogênio Sintase , Quinases da Glicogênio Sintase , Cinética , Mutagênese Sítio-Dirigida , Fases de Leitura Aberta , Fosforilação , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Temperatura , Fatores de Tempo , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...