Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 2): 127793, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926308

RESUMO

Compounds derived from essential oils have been used in active packaging, but their volatility and degradability negatively affect stability and leads to high release rates. The present study aimed to develop PLA bionanocomposite foams loaded with carvacrol cocrystal by supercritical CO2 and its release into a food simulant for control release in food packaging. For this purpose, 4,4'-bipyridine was used as coformer and carvacrol as active agent. Cocrystallized closed cell foams were obtained using supercritical CO2 and were characterized in terms of their physicochemical and mechanical properties, and release kinetics to a D1 simulant were evaluated as well as the antioxidant ability. A better overall mechanical behavior due to the nanoclay promoting a higher interfacial adhesion with the polymeric matrix was revealed. A higher incorporation of carvacrol was observed in samples with higher C30B content. The incorporated cocrystals showed a decrease of one order of magnitude in the estimated effective diffusion coefficient of carvacrol and showed antioxidant activity. These results suggest that the nanocomposite foam containing carvacrol-based cocrystals could be used in active packaging systems with controlled release characteristics, especially with highly volatile compounds, and can be proposed for other fields such as biomedical applications.


Assuntos
Embalagem de Alimentos , Nanocompostos , Embalagem de Alimentos/métodos , Dióxido de Carbono/química , Preparações de Ação Retardada , Poliésteres/química , Antioxidantes/farmacologia , Antioxidantes/química
2.
Polymers (Basel) ; 14(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36433143

RESUMO

In this work, different silk fillers combined with maleinized corn oil (MCO), as environmentally friendly plasticizers, were used to modify the mechanical and thermal properties of polylactic acid (PLA) composites. Melt extrusion and injection were used to obtain samples with a content of 10 wt.% of MCO and 0.5 phr of different silk fillers: crushed silk (CS), silk fibroin microparticles (SFM), and silk fibroin nanoparticles (SFN). PLA formulation with 10 wt.% of MCO and 0.5 g of CS per hundred grams of composite (phr) showed the highest increase in mechanical ductile properties with an increase in elongation at break of approximately 1400%, compared with PLA. Differential scanning calorimetry (DSC) showed a decrease of 2 °C in their glass transition temperature with the addition of different silk fillers. In addition, SFM and SFN increase the degree of crystallinity of PLA. This increment was also confirmed by infrared spectroscopy analysis. Field emission scanning electron microscopy (FESEM) images revealed a good dispersion of the different silk fillers. Among them, PLA formulation with 10 wt.% MCO and 0.5 phr of SFN, showed an optimal balance between maximum resistance and elongation at break, with 52.0 MPa and 10.8%, respectively, improving elongation at break by 635%. Furthermore, all samples were satisfactorily disintegrated under composting conditions.

3.
Polymers (Basel) ; 12(6)2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32545882

RESUMO

In this study, different compatibilizing agents were used to analyze their influence on immiscible blends of polylactide (PLA) and biobased high-density polyethylene (bioPE) 80/20 (wt/wt). The compatibilizing agents used were polyethylene vinyl acetate (EVA) with a content of 33% of vinyl acetate, polyvinyl alcohol (PVA), and dicumyl peroxide (DPC). The influence of each compatibilizing agent on the mechanical, thermal, and microstructural properties of the PLA-bioPE blend was studied using different microscopic techniques (i.e., field emission electron microscopy (FESEM), transmission electron microscopy (TEM), and atomic force microscopy with PeakForce quantitative nanomechanical mapping (AFM-QNM)). Compatibilized PLA-bioPE blends showed an improvement in the ductile properties, with EVA being the compatibilizer that provided the highest elongation at break and the highest impact-absorbed energy (Charpy test). In addition, it was observed by means of the different microscopic techniques that the typical droplet-like structure is maintained, but the use of compatibilizers decreases the dimensions of the dispersed droplets, leading to improved interfacial adhesion, being more pronounced in the case of the EVA compatibilizer. Furthermore, the incorporation of the compatibilizers caused a very marked decrease in the crystallinity of the immiscible PLA-bioPE blend.

4.
Polymers (Basel) ; 12(1)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963296

RESUMO

The interaction between gum rosin and gum rosin derivatives with Mater-Bi type bioplastic, a biodegradable and compostable commercial bioplastic, were studied. Gum rosin and two pentaerythritol esters of gum rosin (Lurefor 125 resin and Unik Tack P100 resin) were assessed as sustainable compatibilizers for the components of Mater-Bi® NF 866 polymeric matrix. To study the influence of each additive in the polymeric matrix, each gum rosin-based additive was compounded in 15 wt % by melt-extrusion and further injection molding process. Then, the mechanical properties were assessed, and the tensile properties and impact resistance were determined. Microscopic analyses were carried out by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and atomic force microscopy with nanomechanical assessment (AFM-QNM). The oxygen barrier and wettability properties were also assayed. The study revealed that the commercial thermoplastic starch is mainly composed of three phases: A polybutylene adipate-co-terephthalate (PBAT) phase, an amorphous phase of thermoplastic starch (TPSa), and a semi-crystalline phase of thermoplastic starch (TPSc). The poor miscibility among the components of the Mater-Bi type bioplastic was confirmed. Finally, the formulations with the gum rosin and its derivatives showed an improvement of the miscibility and the solubility of the components depending on the additive used.

5.
J Agric Food Chem ; 62(41): 10170-80, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25255375

RESUMO

Active biobased packaging materials based on poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends were prepared by melt blending and fully characterized. Catechin incorporation, as antioxidant compound, enhanced the thermal stability, whereas its release was improved by the addition of acetyl(tributyl citrate) (ATBC) as plasticizer. Whereas the incorporation of ATBC resulted in a reduction of elastic modulus and hardness, catechin addition produced more rigid materials due to hydrogen-bonding interactions between catechin hydroxyl groups and carbonyl groups of PLA and PHB. The quantification of catechin released into a fatty food simulant and the antioxidant effectiveness after the release process were demonstrated. The effect of the materials' exposure to a food simulant was also investigated. PHB-added materials maintained their structural and mechanical properties after 10 days in a test medium that represents the worst foreseeable conditions of the intended use. Thus, plasticized PLA-PHB blends with catechin show their potential as biobased active packaging for fatty food.


Assuntos
Catequina/química , Embalagem de Alimentos/instrumentação , Ácido Láctico/química , Polímeros/química , Antioxidantes/química , Ligação de Hidrogênio , Plastificantes , Poliésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...