Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1141862, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275175

RESUMO

Global climate change poses challenges to land use worldwide, and we need to reconsider agricultural practices. While it is generally accepted that biodiversity can be used as a biomarker for healthy agroecosystems, we must specify what specifically composes a healthy microbiome. Therefore, understanding how holobionts function in native, harsh, and wild habitats and how rhizobacteria mediate plant and ecosystem biodiversity in the systems enables us to identify key factors for plant fitness. A systems approach to engineering microbial communities by connecting host phenotype adaptive traits would help us understand the increased fitness of holobionts supported by genetic diversity. Identification of genetic loci controlling the interaction of beneficial microbiomes will allow the integration of genomic design into crop breeding programs. Bacteria beneficial to plants have traditionally been conceived as "promoting and regulating plant growth". The future perspective for agroecosystems should be that microbiomes, via multiple cascades, define plant phenotypes and provide genetic variability for agroecosystems.

2.
Sensors (Basel) ; 22(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35214471

RESUMO

Automating fall risk assessment, in an efficient, non-invasive manner, specifically in the elderly population, serves as an efficient means for implementing wide screening of individuals for fall risk and determining their need for participation in fall prevention programs. We present an automated and efficient system for fall risk assessment based on a multi-depth camera human motion tracking system, which captures patients performing the well-known and validated Berg Balance Scale (BBS). Trained machine learning classifiers predict the patient's 14 scores of the BBS by extracting spatio-temporal features from the captured human motion records. Additionally, we used machine learning tools to develop fall risk predictors that enable reducing the number of BBS tasks required to assess fall risk, from 14 to 4-6 tasks, without compromising the quality and accuracy of the BBS assessment. The reduced battery, termed Efficient-BBS (E-BBS), can be performed by physiotherapists in a traditional setting or deployed using our automated system, allowing an efficient and effective BBS evaluation. We report on a pilot study, run in a major hospital, including accuracy and statistical evaluations. We show the accuracy and confidence levels of the E-BBS, as well as the average number of BBS tasks required to reach the accuracy thresholds. The trained E-BBS system was shown to reduce the number of tasks in the BBS test by approximately 50% while maintaining 97% accuracy. The presented approach enables a wide screening of individuals for fall risk in a manner that does not require significant time or resources from the medical community. Furthermore, the technology and machine learning algorithms can be implemented on other batteries of medical tests and evaluations.


Assuntos
Acidentes por Quedas , Equilíbrio Postural , Acidentes por Quedas/prevenção & controle , Idoso , Humanos , Aprendizado de Máquina , Projetos Piloto , Medição de Risco
3.
Biol Direct ; 10: 58, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26463510

RESUMO

BACKGROUND: The current analysis of transposon elements (TE) in Drosophila melanogaster at Evolution Canyon, (EC), Israel, is based on data and analysis done by our collaborators (Drs. J. Gonzalez, J. Martinez and W. Makalowski, this issue). They estimated the frequencies of 28 TEs (transposon elements) in fruit flies (D. melanogaster) from the ecologically tropic, hot, and dry south-facing slope (SFS) or "African" slope (AS) of EC and compared it with the TE frequencies on the temperate-cool and humid north-facing slope (NFS) or "European" slope (ES), separated, on average, by 250 m. The flies were sampled from two stations on each slope. We received their results, including the frequencies of each TE on each slope, and the probabilities of the statistical analyses (G-tests) of each TE separately. We continued the analysis of the inter-slope differences of the frequencies of the TEs, and based our different conclusions on that analysis and on the difference between micro (=EC) and macro (2000 km.) comparisons [Gonzalez et al. 2015 doi: 10.1186/s13062-015-0075-4 ]. RESULTS: Our collaborators based all their conclusions on the non-significant results of each of the individual tests of the 28 TEs. We analysed also the distribution of the TE differences between the slopes, based on their results. Thirteen TEs were more frequent on the SFS, 11 were more frequent on the NFS, and four had equal frequencies. Because of the equalizing effect of the ongoing migration, only small and temporary differences between the slopes (0 - 0.06) were regarded by us as random fluctuations (drift). Three TEs were intermediate (0.08-0.09) and await additional research. The 11 TEs with large frequency differences (0.12 - 0.22) were regarded by us as putative adaptive TEs, because the equalizing power of ongoing migration will eliminate random large differences. Five of them were higher on the SFS and six were higher on the NFS. Gaps in the distribution of the differences distinguished between the large and small differences. The large gap among the 11 TEs favored on the NFS was significant and supports our rejection of drift as the only explanation of the distribution of the slope differences. The gaps in the distribution of the differences separated the putative TEs with strong enough selection from those TEs that couldn't overrule the migration. The results are compared and contrasted with the directional effect of the frequencies of the same TEs in the study of global climatic comparisons across thousands of kilometers. From the 11 putative adaptive TEs in the local "Evolution Canyon," six differentiate in the same direction as in the continental comparisons and four in the opposite direction. One TE, FBti0019144, differentiated in EC in the same direction as in Australia and in the opposite direction to that of North America. CONCLUSIONS: We presume that the major divergent evolutionary driving force at the local EC microsite is natural selection overruling gene flow. Therefore, after we rejected drift as an explanation of all the large slope differences, we regarded them as putatively adaptive. In order to substantiate the individual TE adaptation, we need to increase the sample sizes and reveal the significant adaptive TEs. The comparison of local and global studies show only partial similarity in the adaptation of the TEs, because of the dryness of the ecologically tropical climate in EC, in contrast to the wet tropical climate in the global compared climates. Moreover, adaptation of a TE may be expressed only in part of the time and specific localities.


Assuntos
Elementos de DNA Transponíveis , Drosophila melanogaster/genética , Evolução Molecular , Seleção Genética , Animais , Fluxo Gênico , Geografia , Israel
4.
Proc Natl Acad Sci U S A ; 111(3): 1043-8, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24402169

RESUMO

Does the paucity of empirical evidence of sympatric speciation in nature reflect reality, despite theoretical support? Or is it due to inappropriate searches in nature with overly restrictive assumptions and an incorrect null hypothesis? Spiny mice, Acomys, described here at Evolution Canyon (EC) incipiently and sympatrically speciate owing to microclimatic interslope divergence. The opposite slopes at EC vary dramatically, physically and biotically, representing the dry and hot south-facing slope savannoid-African continent ["African" slope (AS)], abutting with the north-facing slope forested south-European continent ["European" slope (ES)]. African-originated spiny mice, of the Acomys cahirinus complex, colonized Israel 30,000 y ago based on fossils. Genotypically, we showed significantly higher genetic diversity of mtDNA and amplified fragment length polymorphism of Acomys on the AS compared with the ES. This is also true regionally across Israel. In complete mtDNA, 25% of the haplotypes at EC were slope-biased. Phenotypically, the opposite slope's populations also showed adaptive morphology, physiology, and behavior divergence paralleling regional populations across Israel. Preliminary tests indicate slope-specific mate choices. Colonization of Acomys at the EC first occurred on the AS and then moved to the ES. Strong slope-specific natural selection (both positive and negative) overrules low interslope gene flow. Both habitat slope selection and mate choices suggest ongoing incipient sympatric speciation. We conclude that Acomys at the EC is ecologically and genetically adaptively, incipiently, sympatrically speciating on the ES owing to adaptive microclimatic natural selection.


Assuntos
Especiação Genética , Murinae/genética , Simpatria , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , DNA Mitocondrial/genética , Ecossistema , Fluxo Gênico , Variação Genética , Genótipo , Haplótipos , Israel , Cariotipagem , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Fenótipo , Filogenia , Especificidade da Espécie
5.
PLoS One ; 8(7): e69346, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935991

RESUMO

BACKGROUND: Concealing coloration in rodents is well established. However, only a few studies examined how soil color, pelage color, hair-melanin content, and genetics (i.e., the causal chain) synergize to configure it. This study investigates the causal chain of dorsal coloration in Israeli subterranean blind mole rats, Spalax ehrenbergi. METHODS: We examined pelage coloration of 128 adult animals from 11 populations belonging to four species of Spalax ehrenbergi superspecies (Spalax galili, Spalax golani, Spalax carmeli, and Spalax judaei) and the corresponding coloration of soil samples from the collection sites using a digital colorimeter. Additionally, we quantified hair-melanin contents of 67 animals using HPLC and sequenced the MC1R gene in 68 individuals from all four mole rat species. RESULTS: Due to high variability of soil colors, the correlation between soil and pelage color coordinates was weak and significant only between soil hue and pelage lightness. Multiple stepwise forward regression revealed that soil lightness was significantly associated with all pelage color variables. Pelage color lightness among the four species increased with the higher southward aridity in accordance to Gloger's rule (darker in humid habitats and lighter in arid habitats). Darker and lighter pelage colors are associated with darker basalt and terra rossa, and lighter rendzina soils, respectively. Despite soil lightness varying significantly, pelage lightness and eumelanin converged among populations living in similar soil types. Partial sequencing of the MC1R gene identified three allelic variants, two of which were predominant in northern species (S. galili and S. golani), and the third was exclusive to southern species (S. carmeli and S. judaei), which might have caused the differences found in pheomelanin/eumelanin ratio. CONCLUSION/SIGNIFICANCE: Darker dorsal pelage in darker basalt and terra rossa soils in the north and lighter pelage in rendzina and loess soils in the south reflect the combined results of crypsis and thermoregulatory function following Gloger's rule.


Assuntos
Adaptação Fisiológica/genética , Melaninas/genética , Pigmentos Biológicos/genética , Receptor Tipo 1 de Melanocortina/genética , Spalax/genética , Animais , Cor , Colorimetria , Feminino , Expressão Gênica , Interação Gene-Ambiente , Variação Genética , Israel , Masculino , Melaninas/biossíntese , Pigmentos Biológicos/metabolismo , Receptor Tipo 1 de Melanocortina/metabolismo , Solo/química , Spalax/metabolismo
6.
Proc Natl Acad Sci U S A ; 110(7): 2587-92, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23359700

RESUMO

Sympatric speciation has been controversial since it was first proposed as a mode of speciation. Subterranean blind mole rats (Spalacidae) are considered to speciate allopatrically or peripatrically. Here, we report a possible incipient sympatric adaptive ecological speciation in Spalax galili (2n = 52). The study microsite (0.04 km(2)) is sharply subdivided geologically, edaphically, and ecologically into abutting barrier-free ecologies divergent in rock, soil, and vegetation types. The Pleistocene Alma basalt abuts the Cretaceous Senonian Kerem Ben Zimra chalk. Only 28% of 112 plant species were shared between the soils. We examined mitochondrial DNA in the control region and ATP6 in 28 mole rats from basalt and in 14 from chalk habitats. We also sequenced the complete mtDNA (16,423 bp) of four animals, two from each soil type. Remarkably, the frequency of all major haplotype clusters (HC) was highly soil-biased. HCI and HCII are chalk biased. HC-III was abundant in basalt (36%) but absent in chalk; HC-IV was prevalent in basalt (46.5%) but was low (20%) in chalk. Up to 40% of the mtDNA diversity was edaphically dependent, suggesting constrained gene flow. We identified a homologous recombinant mtDNA in the basalt/chalk studied area. Phenotypically significant divergences differentiate the two populations, inhabiting different soils, in adaptive oxygen consumption and in the amount of outside-nest activity. This identification of a possible incipient sympatric adaptive ecological speciation caused by natural selection indirectly refutes the allopatric alternative. Sympatric ecological speciation may be more prevalent in nature because of abundant and sharply abutting divergent ecologies.


Assuntos
Adaptação Biológica/fisiologia , Ecossistema , Especiação Genética , Variação Genética , Solo/análise , Spalax/genética , Adaptação Biológica/genética , Análise de Variância , Animais , Sequência de Bases , Biologia Computacional , DNA Mitocondrial/genética , Genética Populacional , Haplótipos/genética , Israel , Dados de Sequência Molecular , Consumo de Oxigênio/fisiologia , Seleção Genética , Análise de Sequência de DNA , Spalax/fisiologia , Especificidade da Espécie
7.
PLoS One ; 7(7): e41840, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848631

RESUMO

BACKGROUND: Developmental instability of shelled gastropods is measured as deviations from a perfect equiangular (logarithmic) spiral. We studied six species of gastropods at 'Evolution Canyons I and II' in Carmel and the Galilee Mountains, Israel, respectively. The xeric, south-facing, 'African' slopes and the mesic, north-facing, 'European' slopes have dramatically different microclimates and plant communities. Moreover, 'Evolution Canyon II' receives more rainfall than 'Evolution Canyon I.' METHODOLOGY/PRINCIPAL FINDINGS: We examined fluctuating asymmetry, rate of whorl expansion, shell height, and number of rotations of the body suture in six species of terrestrial snails from the two 'Evolution Canyons.' The xeric 'African' slope should be more stressful to land snails than the 'European' slope, and 'Evolution Canyon I' should be more stressful than 'Evolution Canyon II.' Only Eopolita protensa jebusitica showed marginally significant differences in fluctuating helical asymmetry between the two slopes. Contrary to expectations, asymmetry was marginally greater on the 'European' slope. Shells of Levantina spiriplana caesareana at 'Evolution Canyon I,' were smaller and more asymmetric than those at 'Evolution Canyon II.' Moreover, shell height and number of rotations of the suture were greater on the north-facing slopes of both canyons. CONCLUSIONS/SIGNIFICANCE: Our data is consistent with a trade-off between drought resistance and thermoregulation in snails; Levantina was significantly smaller on the 'African' slope, for increasing surface area and thermoregulation, while Eopolita was larger on the 'African' slope, for reducing water evaporation. In addition, 'Evolution Canyon I' was more stressful than Evolution Canyon II' for Levantina.


Assuntos
Clima , Ecossistema , Evolução Molecular , Caramujos/anatomia & histologia , Animais , Israel , Chuva , Rotação
8.
PLoS One ; 7(4): e34689, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22523554

RESUMO

BACKGROUND: Fluctuating asymmetry is a contentious indicator of stress in populations of animals and plants. Nevertheless, it is a measure of developmental noise, typically obtained by measuring asymmetry across an individual organism's left-right axis of symmetry. These individual, signed asymmetries are symmetrically distributed around a mean of zero. Fluctuating asymmetry, however, has rarely been studied in microorganisms, and never in fungi. OBJECTIVE AND METHODS: We examined colony growth and random phenotypic variation of five soil microfungal species isolated from the opposing slopes of "Evolution Canyon," Mount Carmel, Israel. This canyon provides an opportunity to study diverse taxa inhabiting a single microsite, under different kinds and intensities of abiotic and biotic stress. The south-facing "African" slope of "Evolution Canyon" is xeric, warm, and tropical. It is only 200 m, on average, from the north-facing "European" slope, which is mesic, cool, and temperate. Five fungal species inhabiting both the south-facing "African" slope, and the north-facing "European" slope of the canyon were grown under controlled laboratory conditions, where we measured the fluctuating radial asymmetry and sizes of their colonies. RESULTS: Different species displayed different amounts of radial asymmetry (and colony size). Moreover, there were highly significant slope by species interactions for size, and marginally significant ones for fluctuating asymmetry. There were no universal differences (i.e., across all species) in radial asymmetry and colony size between strains from "African" and "European" slopes, but colonies of Clonostachys rosea from the "African" slope were more asymmetric than those from the "European" slope. CONCLUSIONS AND SIGNIFICANCE: Our study suggests that fluctuating radial asymmetry has potential as an indicator of random phenotypic variation and stress in soil microfungi. Interaction of slope and species for both growth rate and asymmetry of microfungi in a common environment is evidence of genetic differences between the "African" and "European" slopes of "Evolution Canyon."


Assuntos
Fungos/crescimento & desenvolvimento , Microbiologia do Solo , Ascomicetos/crescimento & desenvolvimento , Aspergillus/crescimento & desenvolvimento , Evolução Biológica , Ecossistema , Meio Ambiente , Fungos/citologia , Israel , Penicillium/crescimento & desenvolvimento
9.
PLoS One ; 4(4): e5214, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19357787

RESUMO

BACKGROUND: Local natural laboratories, designated by us as the "Evolution Canyon" model, are excellent tools to study regional and global ecological dynamics across life. They present abiotic and biotic contrasts locally, permitting the pursuit of observations and experiments across diverse taxa sharing sharp microecological subdivisions. Higher solar radiation received by the "African savannah-like" south-facing slopes (AS) in canyons north of the equator than by the opposite "European maquis-like" north-facing slopes (ES) is associated with higher abiotic stress. Scorpions are a suitable taxon to study interslope biodiversity differences, associated with the differences in abiotic factors (climate, drought), due to their ability to adapt to dry environments. METHODOLOGY/PRINCIPAL FINDINGS: Scorpions were studied by the turning stone method and by UV light methods. The pattern observed in scorpions was contrasted with similar patterns in several other taxa at the same place. As expected, the AS proved to be significantly more speciose regarding scorpions, paralleling the interslope patterns in taxa such as lizards and snakes, butterflies (Rhopalocera), beetles (families Tenebrionidae, Dermestidae, Chrysomelidae), and grasshoppers (Orthoptera). CONCLUSIONS/SIGNIFICANCE: Our results support an earlier conclusion stating that the homogenizing effects of migration and stochasticity are not able to eliminate the interslope intra- and interspecific differences in biodiversity despite an interslope distance of only 100 m at the "EC" valley bottom. In our opinion, the interslope microclimate selection, driven mainly by differences in insolance, could be the primary factor responsible for the observed interslope pattern.


Assuntos
Biodiversidade , Evolução Biológica , Meio Ambiente , Escorpiões , Animais , Ecossistema , Israel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...