Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Med Image Anal ; 94: 103132, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442527

RESUMO

Counting of mitotic figures is a fundamental step in grading and prognostication of several cancers. However, manual mitosis counting is tedious and time-consuming. In addition, variation in the appearance of mitotic figures causes a high degree of discordance among pathologists. With advances in deep learning models, several automatic mitosis detection algorithms have been proposed but they are sensitive to domain shift often seen in histology images. We propose a robust and efficient two-stage mitosis detection framework, which comprises mitosis candidate segmentation (Detecting Fast) and candidate refinement (Detecting Slow) stages. The proposed candidate segmentation model, termed EUNet, is fast and accurate due to its architectural design. EUNet can precisely segment candidates at a lower resolution to considerably speed up candidate detection. Candidates are then refined using a deeper classifier network, EfficientNet-B7, in the second stage. We make sure both stages are robust against domain shift by incorporating domain generalization methods. We demonstrate state-of-the-art performance and generalizability of the proposed model on the three largest publicly available mitosis datasets, winning the two mitosis domain generalization challenge contests (MIDOG21 and MIDOG22). Finally, we showcase the utility of the proposed algorithm by processing the TCGA breast cancer cohort (1,124 whole-slide images) to generate and release a repository of more than 620K potential mitotic figures (not exhaustively validated).


Assuntos
Neoplasias da Mama , Mitose , Humanos , Feminino , Algoritmos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Técnicas Histológicas , Processamento de Imagem Assistida por Computador/métodos
2.
IEEE J Biomed Health Inform ; 28(3): 1161-1172, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37878422

RESUMO

We introduce LYSTO, the Lymphocyte Assessment Hackathon, which was held in conjunction with the MICCAI 2019 Conference in Shenzhen (China). The competition required participants to automatically assess the number of lymphocytes, in particular T-cells, in images of colon, breast, and prostate cancer stained with CD3 and CD8 immunohistochemistry. Differently from other challenges setup in medical image analysis, LYSTO participants were solely given a few hours to address this problem. In this paper, we describe the goal and the multi-phase organization of the hackathon; we describe the proposed methods and the on-site results. Additionally, we present post-competition results where we show how the presented methods perform on an independent set of lung cancer slides, which was not part of the initial competition, as well as a comparison on lymphocyte assessment between presented methods and a panel of pathologists. We show that some of the participants were capable to achieve pathologist-level performance at lymphocyte assessment. After the hackathon, LYSTO was left as a lightweight plug-and-play benchmark dataset on grand-challenge website, together with an automatic evaluation platform.


Assuntos
Benchmarking , Neoplasias da Próstata , Masculino , Humanos , Linfócitos , Mama , China
3.
J Pathol Clin Res ; 10(1): e346, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37873865

RESUMO

Early-stage estrogen receptor positive and human epidermal growth factor receptor negative (ER+/HER2-) luminal breast cancer (BC) is quite heterogeneous and accounts for about 70% of all BCs. Ki67 is a proliferation marker that has a significant prognostic value in luminal BC despite the challenges in its assessment. There is increasing evidence that spatial colocalization, which measures the evenness of different types of cells, is clinically important in several types of cancer. However, reproducible quantification of intra-tumor spatial heterogeneity remains largely unexplored. We propose an automated pipeline for prognostication of luminal BC based on the analysis of spatial distribution of Ki67 expression in tumor cells using a large well-characterized cohort (n = 2,081). The proposed Ki67 colocalization (Ki67CL) score can stratify ER+/HER2- BC patients with high significance in terms of BC-specific survival (p < 0.00001) and distant metastasis-free survival (p = 0.0048). Ki67CL score is shown to be highly significant compared with the standard Ki67 index. In addition, we show that the proposed Ki67CL score can help identify luminal BC patients who can potentially benefit from adjuvant chemotherapy.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Prognóstico , Antígeno Ki-67 , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Inteligência Artificial
4.
Med Image Anal ; 92: 103047, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157647

RESUMO

Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around 700 million detected nuclei per model, associated features were used for dysplasia grading and survival analysis, where we demonstrated that the challenge's improvement over the previous state-of-the-art led to significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play an important role in the tumour microevironment. We release challenge models and WSI-level results to foster the development of further methods for biomarker discovery.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Núcleo Celular/patologia , Técnicas Histológicas/métodos
5.
Med Image Anal ; 91: 102997, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37866169

RESUMO

Semantic segmentation of various tissue and nuclei types in histology images is fundamental to many downstream tasks in the area of computational pathology (CPath). In recent years, Deep Learning (DL) methods have been shown to perform well on segmentation tasks but DL methods generally require a large amount of pixel-wise annotated data. Pixel-wise annotation sometimes requires expert's knowledge and time which is laborious and costly to obtain. In this paper, we present a consistency based semi-supervised learning (SSL) approach that can help mitigate this challenge by exploiting a large amount of unlabelled data for model training thus alleviating the need for a large annotated dataset. However, SSL models might also be susceptible to changing context and features perturbations exhibiting poor generalisation due to the limited training data. We propose an SSL method that learns robust features from both labelled and unlabelled images by enforcing consistency against varying contexts and feature perturbations. The proposed method incorporates context-aware consistency by contrasting pairs of overlapping images in a pixel-wise manner from changing contexts resulting in robust and context invariant features. We show that cross-consistency training makes the encoder features invariant to different perturbations and improves the prediction confidence. Finally, entropy minimisation is employed to further boost the confidence of the final prediction maps from unlabelled data. We conduct an extensive set of experiments on two publicly available large datasets (BCSS and MoNuSeg) and show superior performance compared to the state-of-the-art methods.


Assuntos
Núcleo Celular , Semântica , Humanos , Entropia , Técnicas Histológicas , Aprendizado de Máquina Supervisionado , Processamento de Imagem Assistida por Computador
6.
NPJ Precis Oncol ; 7(1): 122, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968376

RESUMO

Breast cancer (BC) grade is a well-established subjective prognostic indicator of tumour aggressiveness. Tumour heterogeneity and subjective assessment result in high degree of variability among observers in BC grading. Here we propose an objective Haematoxylin & Eosin (H&E) image-based prognostic marker for early-stage luminal/Her2-negative BReAst CancEr that we term as the BRACE marker. The proposed BRACE marker is derived from AI based assessment of heterogeneity in BC at a detailed level using the power of deep learning. The prognostic ability of the marker is validated in two well-annotated cohorts (Cohort-A/Nottingham: n = 2122 and Cohort-B/Coventry: n = 311) on early-stage luminal/HER2-negative BC patients treated with endocrine therapy and with long-term follow-up. The BRACE marker is able to stratify patients for both distant metastasis free survival (p = 0.001, C-index: 0.73) and BC specific survival (p < 0.0001, C-index: 0.84) showing comparable prediction accuracy to Nottingham Prognostic Index and Magee scores, which are both derived from manual histopathological assessment, to identify luminal BC patients that may be likely to benefit from adjuvant chemotherapy.

7.
Lancet Digit Health ; 5(11): e786-e797, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37890902

RESUMO

BACKGROUND: Histopathological examination is a crucial step in the diagnosis and treatment of many major diseases. Aiming to facilitate diagnostic decision making and improve the workload of pathologists, we developed an artificial intelligence (AI)-based prescreening tool that analyses whole-slide images (WSIs) of large-bowel biopsies to identify typical, non-neoplastic, and neoplastic biopsies. METHODS: This retrospective cohort study was conducted with an internal development cohort of slides acquired from a hospital in the UK and three external validation cohorts of WSIs acquired from two hospitals in the UK and one clinical laboratory in Portugal. To learn the differential histological patterns from digitised WSIs of large-bowel biopsy slides, our proposed weakly supervised deep-learning model (Colorectal AI Model for Abnormality Detection [CAIMAN]) used slide-level diagnostic labels and no detailed cell or region-level annotations. The method was developed with an internal development cohort of 5054 biopsy slides from 2080 patients that were labelled with corresponding diagnostic categories assigned by pathologists. The three external validation cohorts, with a total of 1536 slides, were used for independent validation of CAIMAN. Each WSI was classified into one of three classes (ie, typical, atypical non-neoplastic, and atypical neoplastic). Prediction scores of image tiles were aggregated into three prediction scores for the whole slide, one for its likelihood of being typical, one for its likelihood of being non-neoplastic, and one for its likelihood of being neoplastic. The assessment of the external validation cohorts was conducted by the trained and frozen CAIMAN model. To evaluate model performance, we calculated area under the convex hull of the receiver operating characteristic curve (AUROC), area under the precision-recall curve, and specificity compared with our previously published iterative draw and rank sampling (IDaRS) algorithm. We also generated heat maps and saliency maps to analyse and visualise the relationship between the WSI diagnostic labels and spatial features of the tissue microenvironment. The main outcome of this study was the ability of CAIMAN to accurately identify typical and atypical WSIs of colon biopsies, which could potentially facilitate automatic removing of typical biopsies from the diagnostic workload in clinics. FINDINGS: A randomly selected subset of all large bowel biopsies was obtained between Jan 1, 2012, and Dec 31, 2017. The AI training, validation, and assessments were done between Jan 1, 2021, and Sept 30, 2022. WSIs with diagnostic labels were collected between Jan 1 and Sept 30, 2022. Our analysis showed no statistically significant differences across prediction scores from CAIMAN for typical and atypical classes based on anatomical sites of the biopsy. At 0·99 sensitivity, CAIMAN (specificity 0·5592) was more accurate than an IDaRS-based weakly supervised WSI-classification pipeline (0·4629) in identifying typical and atypical biopsies on cross-validation in the internal development cohort (p<0·0001). At 0·99 sensitivity, CAIMAN was also more accurate than IDaRS for two external validation cohorts (p<0·0001), but not for a third external validation cohort (p=0·10). CAIMAN provided higher specificity than IDaRS at some high-sensitivity thresholds (0·7763 vs 0·6222 for 0·95 sensitivity, 0·7126 vs 0·5407 for 0·97 sensitivity, and 0·5615 vs 0·3970 for 0·99 sensitivity on one of the external validation cohorts) and showed high classification performance in distinguishing between neoplastic biopsies (AUROC 0·9928, 95% CI 0·9927-0·9929), inflammatory biopsies (0·9658, 0·9655-0·9661), and atypical biopsies (0·9789, 0·9786-0·9792). On the three external validation cohorts, CAIMAN had AUROC values of 0·9431 (95% CI 0·9165-0·9697), 0·9576 (0·9568-0·9584), and 0·9636 (0·9615-0·9657) for the detection of atypical biopsies. Saliency maps supported the representation of disease heterogeneity in model predictions and its association with relevant histological features. INTERPRETATION: CAIMAN, with its high sensitivity in detecting atypical large-bowel biopsies, might be a promising improvement in clinical workflow efficiency and diagnostic decision making in prescreening of typical colorectal biopsies. FUNDING: The Pathology Image Data Lake for Analytics, Knowledge and Education Centre of Excellence; the UK Government's Industrial Strategy Challenge Fund; and Innovate UK on behalf of UK Research and Innovation.


Assuntos
Inteligência Artificial , Neoplasias Colorretais , Humanos , Portugal , Estudos Retrospectivos , Biópsia , Reino Unido , Microambiente Tumoral
8.
Br J Cancer ; 129(11): 1747-1758, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37777578

RESUMO

BACKGROUND: Tumour infiltrating lymphocytes (TILs) are a prognostic parameter in triple-negative and human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC). However, their role in luminal (oestrogen receptor positive and HER2 negative (ER + /HER2-)) BC remains unclear. In this study, we used artificial intelligence (AI) to assess the prognostic significance of TILs in a large well-characterised cohort of luminal BC. METHODS: Supervised deep learning model analysis of Haematoxylin and Eosin (H&E)-stained whole slide images (WSI) was applied to a cohort of 2231 luminal early-stage BC patients with long-term follow-up. Stromal TILs (sTILs) and intratumoural TILs (tTILs) were quantified and their spatial distribution within tumour tissue, as well as the proportion of stroma involved by sTILs were assessed. The association of TILs with clinicopathological parameters and patient outcome was determined. RESULTS: A strong positive linear correlation was observed between sTILs and tTILs. High sTILs and tTILs counts, as well as their proximity to stromal and tumour cells (co-occurrence) were associated with poor clinical outcomes and unfavourable clinicopathological parameters including high tumour grade, lymph node metastasis, large tumour size, and young age. AI-based assessment of the proportion of stroma composed of sTILs (as assessed visually in routine practice) was not predictive of patient outcome. tTILs was an independent predictor of worse patient outcome in multivariate Cox Regression analysis. CONCLUSION: AI-based detection of TILs counts, and their spatial distribution provides prognostic value in luminal early-stage BC patients. The utilisation of AI algorithms could provide a comprehensive assessment of TILs as a morphological variable in WSIs beyond eyeballing assessment.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/patologia , Linfócitos do Interstício Tumoral/patologia , Inteligência Artificial , Prognóstico , Neoplasias de Mama Triplo Negativas/patologia , Biomarcadores Tumorais/metabolismo
9.
Bioinform Adv ; 3(1): vbad122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720007

RESUMO

Summary: Whole slide images (WSIs) are multi-gigapixel images of tissue sections, which are used in digital and computational pathology workflows. WSI datasets are commonly heterogeneous collections of proprietary or niche specialized formats which are challenging to handle. This note describes an open-source Python application for efficiently converting between WSI formats, including common, open, and emerging cloud-friendly formats. WSIC is a software tool that can quickly convert WSI files across various formats. It has a high performance and maintains the resolution metadata of the original images. WSIC is ideal for pre-processing large-scale WSI datasets with different file types. Availability and implementation: Source code is available on GitHub at https://github.com/John-P/wsic/ under a permissive licence. WSIC is also available as a package on PyPI at https://pypi.org/project/WSIC/.

10.
J Med Syst ; 47(1): 99, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37715855

RESUMO

Federated learning (FL), a relatively new area of research in medical image analysis, enables collaborative learning of a federated deep learning model without sharing the data of participating clients. In this paper, we propose FedDropoutAvg, a new federated learning approach for detection of tumor in images of colon tissue slides. The proposed method leverages the power of dropout, a commonly employed scheme to avoid overfitting in neural networks, in both client selection and federated averaging processes. We examine FedDropoutAvg against other FL benchmark algorithms for two different image classification tasks using a publicly available multi-site histopathology image dataset. We train and test the proposed model on a large dataset consisting of 1.2 million image tiles from 21 different sites. For testing the generalization of all models, we select held-out test sets from sites that were not used during training. We show that the proposed approach outperforms other FL methods and reduces the performance gap (to less than 3% in terms of AUC on independent test sites) between FL and a central deep learning model that requires all data to be shared for centralized training, demonstrating the potential of the proposed FedDropoutAvg model to be more generalizable than other state-of-the-art federated models. To the best of our knowledge, ours is the first study to effectively utilize the dropout strategy in a federated setting for tumor detection in histology images.


Assuntos
Algoritmos , Benchmarking , Humanos , Colo/diagnóstico por imagem , Conhecimento , Redes Neurais de Computação
11.
J Pathol ; 260(4): 431-442, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37294162

RESUMO

Oral squamous cell carcinoma (OSCC) is amongst the most common cancers, with more than 377,000 new cases worldwide each year. OSCC prognosis remains poor, related to cancer presentation at a late stage, indicating the need for early detection to improve patient prognosis. OSCC is often preceded by a premalignant state known as oral epithelial dysplasia (OED), which is diagnosed and graded using subjective histological criteria leading to variability and prognostic unreliability. In this work, we propose a deep learning approach for the development of prognostic models for malignant transformation and their association with clinical outcomes in histology whole slide images (WSIs) of OED tissue sections. We train a weakly supervised method on OED cases (n = 137) with malignant transformation (n = 50) and mean malignant transformation time of 6.51 years (±5.35 SD). Stratified five-fold cross-validation achieved an average area under the receiver-operator characteristic curve (AUROC) of 0.78 for predicting malignant transformation in OED. Hotspot analysis revealed various features of nuclei in the epithelium and peri-epithelial tissue to be significant prognostic factors for malignant transformation, including the count of peri-epithelial lymphocytes (PELs) (p < 0.05), epithelial layer nuclei count (NC) (p < 0.05), and basal layer NC (p < 0.05). Progression-free survival (PFS) using the epithelial layer NC (p < 0.05, C-index = 0.73), basal layer NC (p < 0.05, C-index = 0.70), and PELs count (p < 0.05, C-index = 0.73) all showed association of these features with a high risk of malignant transformation in our univariate analysis. Our work shows the application of deep learning for the prognostication and prediction of PFS of OED for the first time and offers potential to aid patient management. Further evaluation and testing on multi-centre data is required for validation and translation to clinical practice. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Lesões Pré-Cancerosas , Humanos , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/patologia , Biomarcadores Tumorais/análise , Hiperplasia/patologia , Lesões Pré-Cancerosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Linfócitos/patologia , Neoplasias de Cabeça e Pescoço/patologia
12.
Gut ; 72(9): 1709-1721, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37173125

RESUMO

OBJECTIVE: To develop an interpretable artificial intelligence algorithm to rule out normal large bowel endoscopic biopsies, saving pathologist resources and helping with early diagnosis. DESIGN: A graph neural network was developed incorporating pathologist domain knowledge to classify 6591 whole-slides images (WSIs) of endoscopic large bowel biopsies from 3291 patients (approximately 54% female, 46% male) as normal or abnormal (non-neoplastic and neoplastic) using clinically driven interpretable features. One UK National Health Service (NHS) site was used for model training and internal validation. External validation was conducted on data from two other NHS sites and one Portuguese site. RESULTS: Model training and internal validation were performed on 5054 WSIs of 2080 patients resulting in an area under the curve-receiver operating characteristic (AUC-ROC) of 0.98 (SD=0.004) and AUC-precision-recall (PR) of 0.98 (SD=0.003). The performance of the model, named Interpretable Gland-Graphs using a Neural Aggregator (IGUANA), was consistent in testing over 1537 WSIs of 1211 patients from three independent external datasets with mean AUC-ROC=0.97 (SD=0.007) and AUC-PR=0.97 (SD=0.005). At a high sensitivity threshold of 99%, the proposed model can reduce the number of normal slides to be reviewed by a pathologist by approximately 55%. IGUANA also provides an explainable output highlighting potential abnormalities in a WSI in the form of a heatmap as well as numerical values associating the model prediction with various histological features. CONCLUSION: The model achieved consistently high accuracy showing its potential in optimising increasingly scarce pathologist resources. Explainable predictions can guide pathologists in their diagnostic decision-making and help boost their confidence in the algorithm, paving the way for its future clinical adoption.


Assuntos
Inteligência Artificial , Medicina Estatal , Humanos , Masculino , Feminino , Estudos Retrospectivos , Algoritmos , Biópsia
13.
Cancer Res ; 83(9): 1410-1425, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36853169

RESUMO

Beyond tertiary lymphoid structures, a significant number of immune-rich areas without germinal center-like structures are observed in non-small cell lung cancer. Here, we integrated transcriptomic data and digital pathology images to study the prognostic implications, spatial locations, and constitution of immune rich areas (immune hotspots) in a cohort of 935 patients with lung cancer from The Cancer Genome Atlas. A high intratumoral immune hotspot score, which measures the proportion of immune hotspots interfacing with tumor islands, was correlated with poor overall survival in lung squamous cell carcinoma but not in lung adenocarcinoma. Lung squamous cell carcinomas with high intratumoral immune hotspot scores were characterized by consistent upregulation of B-cell signatures. Spatial statistical analyses conducted on serial multiplex IHC slides further revealed that only 4.87% of peritumoral immune hotspots and 0.26% of intratumoral immune hotspots were tertiary lymphoid structures. Significantly lower densities of CD20+CXCR5+ and CD79b+ B cells and less diverse immune cell interactions were found in intratumoral immune hotspots compared with peritumoral immune hotspots. Furthermore, there was a negative correlation between the percentages of CD8+ T cells and T regulatory cells in intratumoral but not in peritumoral immune hotspots, with tertiary lymphoid structures excluded. These findings suggest that the intratumoral immune hotspots reflect an immunosuppressive niche compared with peritumoral immune hotspots, independent of the distribution of tertiary lymphoid structures. A balance toward increased intratumoral immune hotspots is indicative of a compromised antitumor immune response and poor outcome in lung squamous cell carcinoma. SIGNIFICANCE: Intratumoral immune hotspots beyond tertiary lymphoid structures reflect an immunosuppressive microenvironment, different from peritumoral immune hotspots, warranting further study in the context of immunotherapies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Estruturas Linfoides Terciárias , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Prognóstico , Carcinoma de Células Escamosas/patologia , Pulmão/patologia , Microambiente Tumoral
14.
Med Image Anal ; 85: 102743, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36702037

RESUMO

Diagnostic, prognostic and therapeutic decision-making of cancer in pathology clinics can now be carried out based on analysis of multi-gigapixel tissue images, also known as whole-slide images (WSIs). Recently, deep convolutional neural networks (CNNs) have been proposed to derive unsupervised WSI representations; these are attractive as they rely less on expert annotation which is cumbersome. However, a major trade-off is that higher predictive power generally comes at the cost of interpretability, posing a challenge to their clinical use where transparency in decision-making is generally expected. To address this challenge, we present a handcrafted framework based on deep CNN for constructing holistic WSI-level representations. Building on recent findings about the internal working of the Transformer in the domain of natural language processing, we break down its processes and handcraft them into a more transparent framework that we term as the Handcrafted Histological Transformer or H2T. Based on our experiments involving various datasets consisting of a total of 10,042 WSIs, the results demonstrate that H2T based holistic WSI-level representations offer competitive performance compared to recent state-of-the-art methods and can be readily utilized for various downstream analysis tasks. Finally, our results demonstrate that the H2T framework can be up to 14 times faster than the Transformer models.


Assuntos
Histologia , Redes Neurais de Computação , Humanos , Histologia/instrumentação
15.
J Pathol ; 260(1): 32-42, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36705810

RESUMO

Triple-negative breast cancer (TNBC) is known to have a relatively poor outcome with variable prognoses, raising the need for more informative risk stratification. We investigated a set of digital, artificial intelligence (AI)-based spatial tumour microenvironment (sTME) features and explored their prognostic value in TNBC. After performing tissue classification on digitised haematoxylin and eosin (H&E) slides of TNBC cases, we employed a deep learning-based algorithm to segment tissue regions into tumour, stroma, and lymphocytes in order to compute quantitative features concerning the spatial relationship of tumour with lymphocytes and stroma. The prognostic value of the digital features was explored using survival analysis with Cox proportional hazard models in a cross-validation setting on two independent international multi-centric TNBC cohorts: The Australian Breast Cancer Tissue Bank (AUBC) cohort (n = 318) and The Cancer Genome Atlas Breast Cancer (TCGA) cohort (n = 111). The proposed digital stromal tumour-infiltrating lymphocytes (Digi-sTILs) score and the digital tumour-associated stroma (Digi-TAS) score were found to carry strong prognostic value for disease-specific survival, with the Digi-sTILs and Digi-TAS scores giving C-index values of 0.65 (p = 0.0189) and 0.60 (p = 0.0437), respectively, on the TCGA cohort as a validation set. Combining the Digi-sTILs feature with the patient's positivity status for axillary lymph nodes yielded a C-index of 0.76 on unseen validation cohorts. We surmise that the proposed digital features could potentially be used for better risk stratification and management of TNBC patients. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Linfócitos do Interstício Tumoral/patologia , Inteligência Artificial , Austrália , Prognóstico , Microambiente Tumoral
16.
Med Image Anal ; 83: 102685, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410209

RESUMO

The recent surge in performance for image analysis of digitised pathology slides can largely be attributed to the advances in deep learning. Deep models can be used to initially localise various structures in the tissue and hence facilitate the extraction of interpretable features for biomarker discovery. However, these models are typically trained for a single task and therefore scale poorly as we wish to adapt the model for an increasing number of different tasks. Also, supervised deep learning models are very data hungry and therefore rely on large amounts of training data to perform well. In this paper, we present a multi-task learning approach for segmentation and classification of nuclei, glands, lumina and different tissue regions that leverages data from multiple independent data sources. While ensuring that our tasks are aligned by the same tissue type and resolution, we enable meaningful simultaneous prediction with a single network. As a result of feature sharing, we also show that the learned representation can be used to improve the performance of additional tasks via transfer learning, including nuclear classification and signet ring cell detection. As part of this work, we train our developed Cerberus model on a huge amount of data, consisting of over 600 thousand objects for segmentation and 440 thousand patches for classification. We use our approach to process 599 colorectal whole-slide images from TCGA, where we localise 377 million, 900 thousand and 2.1 million nuclei, glands and lumina respectively. We make this resource available to remove a major barrier in the development of explainable models for computational pathology.


Assuntos
Pesquisa Biomédica , Humanos
17.
Comput Med Imaging Graph ; 104: 102162, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36584537

RESUMO

Registration of multiple sections in a tissue block is an important pre-requisite task before any cross-slide image analysis. Non-rigid registration methods are capable of finding correspondence by locally transforming a moving image. These methods often rely on an initial guess to roughly align an image pair linearly and globally. This is essential to prevent convergence to a non-optimal minimum. We explore a deep feature based registration (DFBR) method which utilises data-driven descriptors to estimate the global transformation. A multi-stage strategy is adopted for improving the quality of registration. A visualisation tool is developed to view registered pairs of WSIs at different magnifications. With the help of this tool, one can apply a transformation on the fly without the need to generate a transformed moving WSI in a pyramidal form. We compare the performance on our dataset of data-driven descriptors with that of hand-crafted descriptors. Our approach can align the images with only small registration errors. The efficacy of our proposed method is evaluated for a subsequent non-rigid registration step. To this end, the first two steps of the ANHIR winner's framework are replaced with DFBR to register image pairs provided by the challenge. The modified framework produce comparable results to those of the challenge winning team.


Assuntos
Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos
18.
Commun Med (Lond) ; 2: 120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36168445

RESUMO

Background: Computational pathology has seen rapid growth in recent years, driven by advanced deep-learning algorithms. Due to the sheer size and complexity of multi-gigapixel whole-slide images, to the best of our knowledge, there is no open-source software library providing a generic end-to-end API for pathology image analysis using best practices. Most researchers have designed custom pipelines from the bottom up, restricting the development of advanced algorithms to specialist users. To help overcome this bottleneck, we present TIAToolbox, a Python toolbox designed to make computational pathology accessible to computational, biomedical, and clinical researchers. Methods: By creating modular and configurable components, we enable the implementation of computational pathology algorithms in a way that is easy to use, flexible and extensible. We consider common sub-tasks including reading whole slide image data, patch extraction, stain normalization and augmentation, model inference, and visualization. For each of these steps, we provide a user-friendly application programming interface for commonly used methods and models. Results: We demonstrate the use of the interface to construct a full computational pathology deep-learning pipeline. We show, with the help of examples, how state-of-the-art deep-learning algorithms can be reimplemented in a streamlined manner using our library with minimal effort. Conclusions: We provide a usable and adaptable library with efficient, cutting-edge, and unit-tested tools for data loading, pre-processing, model inference, post-processing, and visualization. This enables a range of users to easily build upon recent deep-learning developments in the computational pathology literature.

19.
J Pathol Clin Res ; 8(2): 116-128, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35014198

RESUMO

Recent advances in whole-slide imaging (WSI) technology have led to the development of a myriad of computer vision and artificial intelligence-based diagnostic, prognostic, and predictive algorithms. Computational Pathology (CPath) offers an integrated solution to utilise information embedded in pathology WSIs beyond what can be obtained through visual assessment. For automated analysis of WSIs and validation of machine learning (ML) models, annotations at the slide, tissue, and cellular levels are required. The annotation of important visual constructs in pathology images is an important component of CPath projects. Improper annotations can result in algorithms that are hard to interpret and can potentially produce inaccurate and inconsistent results. Despite the crucial role of annotations in CPath projects, there are no well-defined guidelines or best practices on how annotations should be carried out. In this paper, we address this shortcoming by presenting the experience and best practices acquired during the execution of a large-scale annotation exercise involving a multidisciplinary team of pathologists, ML experts, and researchers as part of the Pathology image data Lake for Analytics, Knowledge and Education (PathLAKE) consortium. We present a real-world case study along with examples of different types of annotations, diagnostic algorithm, annotation data dictionary, and annotation constructs. The analyses reported in this work highlight best practice recommendations that can be used as annotation guidelines over the lifecycle of a CPath project.


Assuntos
Inteligência Artificial , Semântica , Algoritmos , Humanos , Patologistas
20.
J Pathol ; 256(2): 174-185, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34698394

RESUMO

The infiltration of T-lymphocytes in the stroma and tumour is an indication of an effective immune response against the tumour, resulting in better survival. In this study, our aim was to explore the prognostic significance of tumour-associated stroma infiltrating lymphocytes (TASILs) in head and neck squamous cell carcinoma (HNSCC) through an AI-based automated method. A deep learning-based automated method was employed to segment tumour, tumour-associated stroma, and lymphocytes in digitally scanned whole slide images of HNSCC tissue slides. The spatial patterns of lymphocytes and tumour-associated stroma were digitally quantified to compute the tumour-associated stroma infiltrating lymphocytes score (TASIL-score). Finally, the prognostic significance of the TASIL-score for disease-specific and disease-free survival was investigated using the Cox proportional hazard analysis. Three different cohorts of haematoxylin and eosin (H&E)-stained tissue slides of HNSCC cases (n = 537 in total) were studied, including publicly available TCGA head and neck cancer cases. The TASIL-score carries prognostic significance (p = 0.002) for disease-specific survival of HNSCC patients. The TASIL-score also shows a better separation between low- and high-risk patients compared with the manual tumour-infiltrating lymphocytes (TILs) scoring by pathologists for both disease-specific and disease-free survival. A positive correlation of TASIL-score with molecular estimates of CD8+ T cells was also found, which is in line with existing findings. To the best of our knowledge, this is the first study to automate the quantification of TASILs from routine H&E slides of head and neck cancer. Our TASIL-score-based findings are aligned with the clinical knowledge, with the added advantages of objectivity, reproducibility, and strong prognostic value. Although we validated our method on three different cohorts (n = 537 cases in total), a comprehensive evaluation on large multicentric cohorts is required before the proposed digital score can be adopted in clinical practice. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Técnicas de Apoio para a Decisão , Neoplasias de Cabeça e Pescoço/imunologia , Linfócitos do Interstício Tumoral/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Células Estromais/imunologia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Automação Laboratorial , Aprendizado Profundo , Intervalo Livre de Doença , Feminino , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Processamento de Imagem Assistida por Computador , Linfócitos do Interstício Tumoral/patologia , Masculino , Microscopia , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Células Estromais/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...