Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2402624121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38954543

RESUMO

The pial vasculature is the sole source of blood supply to the neocortex. The brain is contained within the skull, a vascularized bone marrow with a unique anatomical connection to the brain meninges. Recent developments in tissue clearing have enabled detailed mapping of the entire pial and calvarial vasculature. However, what are the absolute flow rate values of those vascular networks? This information cannot accurately be retrieved with the commonly used bioimaging methods. Here, we introduce Pia-FLOW, a unique approach based on large-scale transcranial fluorescence localization microscopy, to attain hemodynamic imaging of the whole murine pial and calvarial vasculature at frame rates up to 1,000 Hz and spatial resolution reaching 5.4 µm. Using Pia-FLOW, we provide detailed maps of flow velocity, direction, and vascular diameters which can serve as ground-truth data for further studies, advancing our understanding of brain fluid dynamics. Furthermore, Pia-FLOW revealed that the pial vascular network functions as one unit for robust allocation of blood after stroke.


Assuntos
Conectoma , Hemodinâmica , Pia-Máter , Animais , Camundongos , Hemodinâmica/fisiologia , Pia-Máter/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Crânio/diagnóstico por imagem , Crânio/irrigação sanguínea , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/diagnóstico por imagem , Masculino , Camundongos Endogâmicos C57BL
2.
Brain Pathol ; : e13288, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982662

RESUMO

Abnormal alpha-synuclein (αSyn) and iron accumulation in the brain play an important role in Parkinson's disease (PD). Herein, we aim to visualize αSyn inclusions and iron deposition in the brains of M83 (A53T) mouse models of PD in vivo. The fluorescent pyrimidoindole derivative THK-565 probe was characterized by means of recombinant fibrils and brains from 10- to 11-month-old M83 mice. Concurrent wide-field fluorescence and volumetric multispectral optoacoustic tomography (vMSOT) imaging were subsequently performed in vivo. Structural and susceptibility weighted imaging (SWI) magnetic resonance imaging (MRI) at 9.4 T as well as scanning transmission x-ray microscopy (STXM) were performed to characterize the iron deposits in the perfused brains. Immunofluorescence and Prussian blue staining were further performed on brain slices to validate the detection of αSyn inclusions and iron deposition. THK-565 showed increased fluorescence upon binding to recombinant αSyn fibrils and αSyn inclusions in post-mortem brain slices from patients with PD and M83 mice. Administration of THK-565 in M83 mice showed higher cerebral retention at 20 and 40 min post-intravenous injection by wide-field fluorescence compared to nontransgenic littermate mice, in congruence with the vMSOT findings. SWI/phase images and Prussian blue indicated the accumulation of iron deposits in the brains of M83 mice, presumably in the Fe3+ form, as evinced by the STXM results. In conclusion, we demonstrated in vivo mapping of αSyn by means of noninvasive epifluorescence and vMSOT imaging and validated the results by targeting the THK-565 label and SWI/STXM identification of iron deposits in M83 mouse brains ex vivo.

3.
Chem Soc Rev ; 53(12): 6068-6099, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38738633

RESUMO

Optoacoustic (OA) imaging offers powerful capabilities for interrogating biological tissues with rich optical absorption contrast while maintaining high spatial resolution for deep tissue observations. The spectrally distinct absorption of visible and near-infrared photons by endogenous tissue chromophores facilitates extraction of diverse anatomic, functional, molecular, and metabolic information from living tissues across various scales, from organelles and cells to whole organs and organisms. The primarily blood-related contrast and limited penetration depth of OA imaging have fostered the development of multimodal approaches to fully exploit the unique advantages and complementarity of the method. We review the recent hybridization efforts, including multimodal combinations of OA with ultrasound, fluorescence, optical coherence tomography, Raman scattering microscopy and magnetic resonance imaging as well as ionizing methods, such as X-ray computed tomography, single-photon-emission computed tomography and positron emission tomography. Considering that most molecules absorb light across a broad range of the electromagnetic spectrum, the OA interrogations can be extended to a large number of exogenously administered small molecules, particulate agents, and genetically encoded labels. This unique property further makes contrast moieties used in other imaging modalities amenable for OA sensing.


Assuntos
Meios de Contraste , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Humanos , Meios de Contraste/química , Animais , Imagem Multimodal/métodos , Imageamento por Ressonância Magnética/métodos
4.
Ultrasonics ; 141: 107349, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788335

RESUMO

Piezoelectric detectors are integral part of modern ultrasound imaging systems. Their utility has also been extended beyond the established methodologies into the emerging realm of hybrid optoacoustic imaging. Conventional piezoceramic detectors, however, struggle to combine high detection sensitivity with ultrawide bandwidth, both considered critical for attaining optimal optoacoustic imaging performance. Our research, both theoretical and empirical, unveils that damped piezopolymer detectors fabricated from PVDF-TrFE are markedly capable of achieving a synergistic blend between broad bandwidth and superb sensitivity. Experimental evaluations reflected an average sensitivity of 15.5 µV/Pa within a 1-10 MHz band for a 120 µm thick detector and 6.4 µV/Pa within a 1-30 MHz band for a 20 µm thick detector, thus outperforming conventional piezoelectric analogues. The resultant noise equivalent pressure (NEPs) values were 0.3 Pa and 1.2 Pa for the 20 µm and 120 µm detectors, respectively. Our findings herald a significant stride towards enhancing the efficacy of ultrawideband ultrasound and optoacoustic imaging systems.

5.
Photoacoustics ; 38: 100616, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38770433

RESUMO

This study highlights the potential of scanning optoacoustic angiography (OA) in identifying alterations of superficial vasculature in patients with post-thrombotic syndrome (PTS) of the foot, a venous stress disorder associated with significant morbidity developing from long-term effects of deep venous thrombosis. The traditional angiography methods available in the clinics are not capable of reliably assessing the state of peripheral veins that provide blood outflow from the skin, a key hallmark of personalized risks of PTS formation after venous thrombosis. Our findings indicate that OA can detect an increase in blood volume, diameter, and tortuosity of superficial blood vessels. The inability to spatially separate vascular plexuses of the dermis and subcutaneous adipose tissue serves as a crucial criterion for distinguishing PTS from normal vasculature. Furthermore, our study demonstrates the ability of scanning optoacoustic angiography to detect blood filling decrease in an elevated limb position versus increase in a lowered position.

6.
Nat Commun ; 15(1): 3526, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664419

RESUMO

Large-scale imaging of brain activity with high spatio-temporal resolution is crucial for advancing our understanding of brain function. The existing neuroimaging techniques are largely limited by restricted field of view, slow imaging speed, or otherwise do not have the adequate spatial resolution to capture brain activities on a capillary and cellular level. To address these limitations, we introduce fluorescence localization microscopy aided with sparsely-labeled red blood cells for cortex-wide morphological and functional cerebral angiography with 4.9 µm spatial resolution and 1 s temporal resolution. When combined with fluorescence calcium imaging, the proposed method enables extended recordings of stimulus-evoked neuro-vascular changes in the murine brain while providing simultaneous multiparametric readings of intracellular neuronal activity, blood flow velocity/direction/volume, and vessel diameter. Owing to its simplicity and versatility, the proposed approach will become an invaluable tool for deciphering the regulation of cortical microcirculation and neurovascular coupling in health and disease.


Assuntos
Eritrócitos , Microscopia de Fluorescência , Animais , Eritrócitos/metabolismo , Eritrócitos/citologia , Microscopia de Fluorescência/métodos , Camundongos , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Angiografia Cerebral/métodos , Cálcio/metabolismo , Circulação Cerebrovascular/fisiologia , Corantes Fluorescentes/química , Acoplamento Neurovascular/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Microcirculação
7.
Adv Sci (Weinh) ; 11(22): e2400089, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38526147

RESUMO

Noninvasive monitoring of cardiac development can potentially prevent cardiac anomalies in adulthood. Mouse models provide unique opportunities to study cardiac development and disease in mammals. However, high-resolution noninvasive functional analyses of murine embryonic cardiac models are challenging because of the small size and fast volumetric motion of the embryonic heart, which is deeply embedded inside the uterus. In this study, a real time volumetric optoacoustic spectroscopy (VOS) platform for whole-heart visualization with high spatial (100 µm) and temporal (10 ms) resolutions is developed. Embryonic heart development on gestational days (GDs) 14.5-17.5 and quantify cardiac dynamics using time-lapse-4D image data of the heart is followed. Additionally, spectroscopic recordings enable the quantification of the blood oxygenation status in heart chambers in a label-free and noninvasive manner. This technology introduces new possibilities for high-resolution quantification of embryonic heart function at different gestational stages in mammalian models, offering an invaluable noninvasive method for developmental biology.


Assuntos
Coração , Técnicas Fotoacústicas , Animais , Camundongos , Técnicas Fotoacústicas/métodos , Coração/embriologia , Coração/diagnóstico por imagem , Análise Espectral/métodos , Feminino , Gravidez
8.
Adv Sci (Weinh) ; 11(18): e2308336, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38445972

RESUMO

Tendon injuries resulting from accidents and aging are increasing globally. However, key tendon functional parameters such as microvascularity and oxygen perfusion remain inaccessible via the currently available clinical diagnostic tools, resulting in disagreements on optimal treatment options. Here, a new noninvasive method for anatomical and functional characterization of human tendons based on multispectral optoacoustic tomography (MSOT) is reported. Healthy subjects are investigated using a hand-held scanner delivering real-time volumetric images. Tendons in the wrist, ankle, and lower leg are imaged in the near-infrared optical spectrum to utilize endogenous contrast from Type I collagen. Morphology of the flexor carpi ulnaris, carpi radialis, palmaris longus, and Achilles tendons are reconstructed in full. The functional roles of the flexor digitorium longus, hallicus longus, and the tibialis posterior tendons have been visualized by dynamic tracking during toe extension-flexion motion. Furthermore, major vessels and microvasculature near the Achilles tendon are localized, and the global increase in oxygen saturation in response to targeted exercise is confirmed by perfusion studies. MSOT is shown to be a versatile tool capable of anatomical and functional tendon assessments. Future studies including abnormal subjects can validate the method as a viable noninvasive clinical tool for tendinopathy management and healing monitoring.


Assuntos
Técnicas Fotoacústicas , Tendões , Humanos , Técnicas Fotoacústicas/métodos , Tendões/diagnóstico por imagem , Adulto , Masculino , Tomografia/métodos , Feminino , Traumatismos dos Tendões/diagnóstico por imagem
9.
Opt Lett ; 49(6): 1469-1472, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489427

RESUMO

Optoacoustic (OA) imaging has achieved tremendous progress with state-of-the-art systems providing excellent functional and molecular contrast, centimeter scale penetration into living tissues, and ultrafast imaging performance, making it highly suitable for handheld imaging in the clinics. OA can greatly benefit from efficient integration with ultrasound (US) imaging, which remains the routine method in bedside clinical diagnostics. However, such integration has not been straightforward since the two modalities typically involve different image acquisition strategies. Here, we present a new, to our knowledge, hybrid optoacoustic ultrasound (OPUS) imaging approach employing a spherical array with dedicated segments for each modality to enable volumetric OA imaging merged with conventional B-mode US. The system performance is subsequently showcased in healthy human subjects. The new OPUS approach hence represents an important step toward establishing OA in point-of-care diagnostic settings.


Assuntos
Técnicas Fotoacústicas , Humanos , Técnicas Fotoacústicas/métodos , Ultrassonografia/métodos , Diagnóstico por Imagem , Voluntários Saudáveis
10.
Neurophotonics ; 11(1): 014413, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38371339

RESUMO

Significance: An array of techniques for targeted neuromodulation is emerging, with high potential in brain research and therapy. Calcium imaging or other forms of functional fluorescence imaging are central solutions for monitoring cortical neural responses to targeted neuromodulation, but often are confounded by thermal effects that are inter-mixed with neural responses. Aim: Here, we develop and demonstrate a method for effectively suppressing fluorescent thermal transients from calcium responses. Approach: We use high precision phased-array 3 MHz focused ultrasound delivery integrated with fiberscope-based widefield fluorescence to monitor cortex-wide calcium changes. Our approach for detecting the neural activation first takes advantage of the high inter-hemispheric correlation of resting state Ca2+ dynamics and then removes the ultrasound-induced thermal effect by subtracting its simulated spatio-temporal signature from the processed profile. Results: The focused 350 µm-sized ultrasound stimulus triggered rapid localized activation events dominated by transient thermal responses produced by ultrasound. By employing bioheat equation to model the ultrasound heat deposition, we can recover putative neural responses to ultrasound. Conclusions: The developed method for canceling transient thermal fluorescence quenching could also find applications with optical stimulation techniques to monitor thermal effects and disentangle them from neural responses. This approach may help deepen our understanding of the mechanisms and macroscopic effects of ultrasound neuromodulation, further paving the way for tailoring the stimulation regimes toward specific applications.

11.
Data Brief ; 53: 110188, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38406243

RESUMO

This dataset offers images of mouse brains impacted by photothrombotic stroke in the sensorimotor cortex published by Weber et al. NeuroImage (2024). Data is gathered using two primary techniques: (1) whole-brain ex-vivo magnetic resonance imaging (MRI) and (2) 40 µm thick coronal histological sections that undergo immunofluorescence staining with NeuroTrace. Infarct areas and volumes are assessed through MRI at two distinct time frames-three days (acute) and 28 days (chronic) following photothrombotic stroke induction. Subsequently, the brains are sectioned into 40 µm thick coronal slices, stained with NeuroTrace, and imaged as whole sections. The dataset holds considerable value for reuse, particularly for researchers focused on stroke volume estimation methods as well as those interested in comparing the efficacy of MRI and histological techniques.

12.
Adv Drug Deliv Rev ; 205: 115177, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38184194

RESUMO

Monitoring brain responses to ultrasonic interventions is becoming an important pillar of a growing number of applications employing acoustic waves to actuate and cure the brain. Optical interrogation of living tissues provides a unique means for retrieving functional and molecular information related to brain activity and disease-specific biomarkers. The hybrid optoacoustic imaging methods have further enabled deep-tissue imaging with optical contrast at high spatial and temporal resolution. The marriage between light and sound thus brings together the highly complementary advantages of both modalities toward high precision interrogation, stimulation, and therapy of the brain with strong impact in the fields of ultrasound neuromodulation, gene and drug delivery, or noninvasive treatments of neurological and neurodegenerative disorders. In this review, we elaborate on current advances in optical and optoacoustic monitoring of ultrasound interventions. We describe the main principles and mechanisms underlying each method before diving into the corresponding biomedical applications. We identify areas of improvement as well as promising approaches with clinical translation potential.


Assuntos
Encéfalo , Diagnóstico por Imagem , Humanos , Ultrassonografia , Encéfalo/diagnóstico por imagem
13.
Neuroimage ; 287: 120518, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38219841

RESUMO

Stroke volume is a key determinant of infarct severity and an important metric for evaluating treatments. However, accurate estimation of stroke volume can be challenging, due to the often confined 2-dimensional nature of available data. Here, we introduce a comprehensive semi-automated toolkit to reliably estimate stroke volumes based on (1) whole brains ex-vivo magnetic resonance imaging (MRI) and (2) brain sections that underwent immunofluorescence staining. We located and quantified infarct areas from MRI three days (acute) and 28 days (chronic) after photothrombotic stroke induction in whole mouse brains. MRI results were compared with measures obtained from immunofluorescent histologic sections of the same brains. We found that infarct volume determined by post-mortem MRI was highly correlated with a deviation of only 6.6 % (acute) and 4.9 % (chronic) to the measurements as determined in the histological brain sections indicating that both methods are capable of accurately assessing brain tissue damage (Pearson r > 0.9, p < 0.001). The Dice similarity coefficient (DC) showed a high degree of coherence (DC > 0.8) between MRI-delineated regions of interest (ROIs) and ROIs obtained from histologic sections at four to six pre-defined landmarks, with histology-based delineation demonstrating higher inter-operator similarity compared to MR images. We further investigated stroke-related scarring and post-ischemic angiogenesis in cortical peri­infarct regions and described a negative correlation between GFAP+fluorescence intensity and MRI-obtained lesion size.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Camundongos , Animais , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/patologia , Volume Sistólico , Roedores , Acidente Vascular Cerebral/patologia , Imageamento por Ressonância Magnética/métodos , Infarto
14.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38100332

RESUMO

Functional magnetic resonance imaging faces inherent challenges when applied to deep-brain areas in rodents, e.g. entorhinal cortex, due to the signal loss near the ear cavities induced by susceptibility artifacts and reduced sensitivity induced by the long distance from the surface array coil. Given the pivotal roles of deep brain regions in various diseases, optimized imaging techniques are needed. To mitigate susceptibility-induced signal losses, we introduced baby cream into the middle ear. To enhance the detection sensitivity of deep brain regions, we implemented inductively coupled ear-bars, resulting in approximately a 2-fold increase in sensitivity in entorhinal cortex. Notably, the inductively coupled ear-bar can be seamlessly integrated as an add-on device, without necessitating modifications to the scanner interface. To underscore the versatility of inductively coupled ear-bars, we conducted echo-planner imaging-based task functional magnetic resonance imaging in rats modeling Alzheimer's disease. As a proof of concept, we also demonstrated resting-state-functional magnetic resonance imaging connectivity maps originating from the left entorhinal cortex-a central hub for memory and navigation networks-to amygdala hippocampal area, Insular Cortex, Prelimbic Systems, Cingulate Cortex, Secondary Visual Cortex, and Motor Cortex. This work demonstrates an optimized procedure for acquiring large-scale networks emanating from a previously challenging seed region by conventional magnetic resonance imaging detectors, thereby facilitating improved observation of functional magnetic resonance imaging outcomes.


Assuntos
Doença de Alzheimer , Imageamento por Ressonância Magnética , Ratos , Animais , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Encéfalo , Giro do Cíngulo
15.
Med Image Anal ; 91: 103012, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37922769

RESUMO

Optoacoustic (OA) imaging is based on optical excitation of biological tissues with nanosecond-duration laser pulses and detection of ultrasound (US) waves generated by thermoelastic expansion following light absorption. The image quality and fidelity of OA images critically depend on the extent of tomographic coverage provided by the US detector arrays. However, full tomographic coverage is not always possible due to experimental constraints. One major challenge concerns an efficient integration between OA and pulse-echo US measurements using the same transducer array. A common approach toward the hybridization consists in using standard linear transducer arrays, which readily results in arc-type artifacts and distorted shapes in OA images due to the limited angular coverage. Deep learning methods have been proposed to mitigate limited-view artifacts in OA reconstructions by mapping artifactual to artifact-free (ground truth) images. However, acquisition of ground truth data with full angular coverage is not always possible, particularly when using handheld probes in a clinical setting. Deep learning methods operating in the image domain are then commonly based on networks trained on simulated data. This approach is yet incapable of transferring the learned features between two domains, which results in poor performance on experimental data. Here, we propose a signal domain adaptation network (SDAN) consisting of i) a domain adaptation network to reduce the domain gap between simulated and experimental signals and ii) a sides prediction network to complement the missing signals in limited-view OA datasets acquired from a human forearm by means of a handheld linear transducer array. The proposed method showed improved performance in reducing limited-view artifacts without the need for ground truth signals from full tomographic acquisitions.


Assuntos
Tomografia Computadorizada por Raios X , Tomografia , Humanos , Tomografia/métodos , Ultrassonografia/métodos , Artefatos , Transdutores , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas
16.
Adv Sci (Weinh) ; 11(9): e2306087, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38115760

RESUMO

Major biological discoveries are made by interrogating living organisms with light. However, the limited penetration of un-scattered photons within biological tissues limits the depth range covered by optical methods. Deep-tissue imaging is achieved by combining light and ultrasound. Optoacoustic imaging exploits the optical generation of ultrasound to render high-resolution images at depths unattainable with optical microscopy. Recently, laser ultrasound has been suggested as a means of generating broadband acoustic waves for high-resolution pulse-echo ultrasound imaging. Herein, an approach is proposed to simultaneously interrogate biological tissues with light and ultrasound based on layer-by-layer coating of silica optical fibers with a controlled degree of transparency. The time separation between optoacoustic and ultrasound signals collected with a custom-made spherical array transducer is exploited for simultaneous 3D optoacoustic and laser ultrasound (OPLUS) imaging with a single laser pulse. OPLUS is shown to enable large-scale anatomical characterization of tissues along with functional multi-spectral imaging of chromophores and assessment of cardiac dynamics at ultrafast rates only limited by the pulse repetition frequency of the laser. The suggested approach provides a flexible and scalable means for developing a new generation of systems synergistically combining the powerful capabilities of optoacoustics and ultrasound imaging in biology and medicine.


Assuntos
Lasers , Microscopia , Ultrassonografia
17.
Theranostics ; 13(12): 4217-4228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554280

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is an umbrella term referring to a group of conditions associated to fat deposition and damage of liver tissue. Early detection of fat accumulation is essential to avoid progression of NAFLD to serious pathological stages such as liver cirrhosis and hepatocellular carcinoma. Methods: We exploited the unique capabilities of transmission-reflection optoacoustic ultrasound (TROPUS), which combines the advantages of optical and acoustic contrasts, for an early-stage multi-parametric assessment of NAFLD in mice. Results: The multispectral optoacoustic imaging allowed for spectroscopic differentiation of lipid content, as well as the bio-distributions of oxygenated and deoxygenated hemoglobin in liver tissues in vivo. The pulse-echo (reflection) ultrasound (US) imaging further provided a valuable anatomical reference whilst transmission US facilitated the mapping of speed of sound changes in lipid-rich regions, which was consistent with the presence of macrovesicular hepatic steatosis in the NAFLD livers examined with ex vivo histological staining. Conclusion: The proposed multimodal approach facilitates quantification of liver abnormalities at early stages using a variety of optical and acoustic contrasts, laying the ground for translating the TROPUS approach toward diagnosis and monitoring NAFLD in patients.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/patologia , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Lipídeos
18.
Photoacoustics ; 32: 100532, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37645255

RESUMO

Emerging evidence indicates crosstalk between the brain and hematopoietic system following cerebral ischemia. Here, we investigated metabolism and oxygenation in the spleen and spinal cord in a transient middle cerebral artery occlusion (tMCAO) model. Sham-operated and tMCAO mice underwent [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) to assess glucose metabolism. Naïve, sham-operated and tMCAO mice underwent multispectral optoacoustic tomography (MSOT) assisted by quantitative model-based reconstruction and unmixing algorithms for accurate mapping of oxygenation patterns in peripheral tissues at 24 h after reperfusion. We found increased [18F]FDG uptake and reduced MSOT oxygen saturation, indicating hypoxia in the thoracic spinal cord of tMCAO mice compared with sham-operated mice but not in the spleen. Reduced spleen size was observed in tMCAO mice compared with sham-operated mice ex vivo. tMCAO led to an increase in the numbers of mature T cells in femoral bone marrow tissues, concomitant with a stark reduction in these cell subsets in the spleen and peripheral blood. The combination of quantitative PET and MSOT thus enabled observation of hypoxia and increased metabolic activity in the spinal cord of tMCAO mice at 24 h after occlusion compared to sham-operated mice.

19.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425954

RESUMO

Background: Abnormal alpha-synuclein and iron accumulation in the brain play an important role in Parkinson's disease (PD). Herein, we aim at visualizing alpha-synuclein inclusions and iron deposition in the brains of M83 (A53T) mouse models of PD in vivo. Methods: Fluorescently labelled pyrimidoindole-derivative THK-565 was characterized by using recombinant fibrils and brains from 10-11 months old M83 mice, which subsequently underwent in vivo concurrent wide-field fluorescence and volumetric multispectral optoacoustic tomography (vMSOT) imaging. The in vivo results were verified against structural and susceptibility weighted imaging (SWI) magnetic resonance imaging (MRI) at 9.4 Tesla and scanning transmission X-ray microscopy (STXM) of perfused brains. Brain slice immunofluorescence and Prussian blue staining were further performed to validate the detection of alpha-synuclein inclusions and iron deposition in the brain, respectively. Results: THK-565 showed increased fluorescence upon binding to recombinant alpha-synuclein fibrils and alpha-synuclein inclusions in post-mortem brain slices from patients with Parkinson's disease and M83 mice. i.v. administration of THK-565 in M83 mice showed higher cerebral retention at 20 and 40 minutes post-injection by wide-field fluorescence compared to non-transgenic littermate mice, in congruence with the vMSOT findings. SWI/phase images and Prussian blue indicated the accumulation of iron deposits in the brains of M83 mice, presumably in the Fe3+ form, as evinced by the STXM results. Conclusion: We demonstrated in vivo mapping of alpha-synuclein by means of non-invasive epifluorescence and vMSOT imaging assisted with a targeted THK-565 label and SWI/STXM identification of iron deposits in M83 mouse brains ex vivo.

20.
Photoacoustics ; 31: 100522, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37362869

RESUMO

Optoacoustic tomography (OAT) provides a non-invasive means to characterize cerebral hemodynamics across an entire murine brain while attaining multi-parametric readouts not available with other modalities. This unique capability can massively impact our understanding of brain function. However, OAT largely lacks the soft tissue contrast required for unambiguous identification of brain regions. Hence, its accurate registration to a reference brain atlas is paramount for attaining meaningful functional readings. Herein, we capitalized on the simultaneously acquired bi-modal data from the recently-developed hybrid magnetic resonance optoacoustic tomography (MROT) scanner in order to devise an image coregistration paradigm that facilitates brain parcellation and anatomical referencing. We evaluated the performance of the proposed methodology by coregistering OAT data acquired with a standalone system using different registration methods. The enhanced performance is further demonstrated for functional OAT data analysis and characterization of stimulus-evoked brain responses. The suggested approach enables better consolidation of the research findings thus facilitating wider acceptance of OAT as a powerful neuroimaging tool to study brain functions and diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA