Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 13(11)2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36360162

RESUMO

Maturation of microRNAs (miRNAs) begins by the "Microprocessor" complex, containing the Drosha endonuclease and its partner protein, "DiGeorge Syndrome Critical Region 8" (DGCR8). Although the main function of the two proteins is to coordinate the first step of precursor miRNAs formation, several studies revealed their miRNA-independent functions in other RNA-related pathways (e.g., in snoRNA decay) or, for the DGCR8, the role in tissue development. To investigate the specific roles of DGCR8 in various cellular pathways, we previously established a human embryonic stem-cell (hESC) line carrying a monoallelic DGCR8 mutation by using the CRISPR-Cas9 system. In this study, we genetically characterized single-cell originated progenies of the cell line and showed that DGCR8 heterozygous mutation results in only a modest effect on the mRNA level but a significant decrease at the protein level. Self-renewal and trilineage differentiation capacity of these hESCs were not affected by the mutation. However, partial disturbance of the Microprocessor function could be revealed in pri-miRNA processing along the human chromosome 19 miRNA cluster in several clones. With all these studies, we can demonstrate that the mutant hESC line is a good model to study not only miRNA-related but also other "noncanonical" functions of the DGCR8 protein.


Assuntos
MicroRNAs , Proteínas de Ligação a RNA , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , Células-Tronco/metabolismo , Mutação
2.
J Mol Cell Cardiol ; 165: 19-30, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34959166

RESUMO

BACKGROUND: Cardiac cell lines and primary cells are widely used in cardiovascular research. Despite increasing number of publications using these models, comparative characterization of these cell lines has not been performed, therefore, their limitations are undetermined. We aimed to compare cardiac cell lines to primary cardiomyocytes and to mature cardiac tissues in a systematic manner. METHODS AND RESULTS: Cardiac cell lines (H9C2, AC16, HL-1) were differentiated with widely used protocols. Left ventricular tissue, neonatal primary cardiomyocytes, and human induced pluripotent stem cell-derived cardiomyocytes served as reference tissue or cells. RNA expression of cardiac markers (e.g. Tnnt2, Ryr2) was markedly lower in cell lines compared to references. Differentiation induced increase in cardiac- and decrease in embryonic markers however, the overall transcriptomic profile and annotation to relevant biological processes showed consistently less pronounced cardiac phenotype in all cell lines in comparison to the corresponding references. Immunocytochemistry confirmed low expressions of structural protein sarcomeric alpha-actinin, troponin I and caveolin-3 in cell lines. Susceptibility of cell lines to sI/R injury in terms of viability as well as mitochondrial polarization differed from the primary cells irrespective of their degree of differentiation. CONCLUSION: Expression patterns of cardiomyocyte markers and whole transcriptomic profile, as well as response to sI/R, and to hypertrophic stimuli indicate low-to-moderate similarity of cell lines to primary cells/cardiac tissues regardless their differentiation. Low resemblance of cell lines to mature adult cardiac tissue limits their potential use. Low translational value should be taken into account while choosing a particular cell line to model cardiomyocytes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Animais , Biomarcadores/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Fenótipo , Transcriptoma
3.
Stem Cell Res ; 50: 102134, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33360445

RESUMO

DiGeorge Syndrome (DGS) Critical Region 8 (DGCR8) is a primary candidate gene in they DGS. The DGCR8 microprocessor complex subunit is an essential cofactor in the canonical miRNA biogenesis which is involved in diverse cellular functions such as cell fate decisions, apoptosis and different signaling pathways. However, the role of DGCR8 in these processes or development of DGS is not fully understood. Here we present a heterozygous DGCR8 mutant human embryonic stem cell line (HuES9DGCR8+/-) created by the CRISPR/Cas9 system. The generated HuES9DGCR8+/- cells maintain normal karyotype, morphology, pluripotency and differentiation capacity into all three germ layers.

4.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266139

RESUMO

Induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) are promising tools to model complex neurological or psychiatric diseases, including schizophrenia. Multiple studies have compared patient-derived and healthy control NPCs derived from iPSCs in order to investigate cellular phenotypes of this disease, although the establishment, stabilization, and directed differentiation of iPSC lines are rather expensive and time-demanding. However, interrupted reprogramming by omitting the stabilization of iPSCs may allow for the generation of a plastic stage of the cells and thus provide a shortcut to derive NPSCs directly from tissue samples. Here, we demonstrate a method to generate shortcut NPCs (sNPCs) from blood mononuclear cells and present a detailed comparison of these sNPCs with NPCs obtained from the same blood samples through stable iPSC clones and a subsequent neural differentiation (classical NPCs-cNPCs). Peripheral blood cells were obtained from a schizophrenia patient and his two healthy parents (a case-parent trio), while a further umbilical cord blood sample was obtained from the cord of a healthy new-born. The expression of stage-specific markers in sNPCs and cNPCs were compared both at the protein and RNA levels. We also performed functional tests to investigate Wnt and glutamate signaling and the oxidative stress, as these pathways have been suggested to play important roles in the pathophysiology of schizophrenia. We found similar responses in the two types of NPCs, suggesting that the shortcut procedure provides sNPCs, allowing an efficient screening of disease-related phenotypes.


Assuntos
Diferenciação Celular , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Biomarcadores , Diferenciação Celular/genética , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Glutamina/metabolismo , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Transdução de Sinais
5.
Stem Cell Res ; 49: 102051, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33099106

RESUMO

Here we describe the generation of induced pluripotent stem cell (iPSC) lines from peripheral blood samples of identical twin sisters with type 2 diabetes mellitus (DM2). Two clonal lines from each patient (HU-DM2-A-1, HU-DM2-A-2 and HU-DM2-B-1, HU-DM2-B-2) were established via Sendai viral reprograming of peripheral blood mononuclear cells, and characterized to confirm pluripotency and genetic integrity. The established iPSC lines can help to investigate DM2 related cellular phenotypes and provide a model system for drug testing.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , Células-Tronco Pluripotentes Induzidas , Linhagem Celular , Humanos , Leucócitos Mononucleares , Gêmeos Monozigóticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...