Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(11): 10608-10616, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37224165

RESUMO

The magnetic properties of transition-metal ions are generally described by the atomic spins of the ions and their exchange coupling. The orbital moment, usually largely quenched due the ligand field, is then seen as a perturbation. In such a scheme, S = 1/2 ions are predicted to be isotropic. We investigate a Co(II) complex with two antiferromagnetically coupled 1/2 spins on Au(111) using low-temperature scanning tunneling microscopy, X-ray magnetic circular dichroism, and density functional theory. We find that each of the Co ions has an orbital moment comparable to that of the spin, leading to magnetic anisotropy, with the spins preferentially oriented along the Co-Co axis. The orbital moment and the associated magnetic anisotropy is tuned by varying the electronic coupling of the molecule to the substrate and the microscope tip. These findings show the need to consider the orbital moment even in systems with strong ligand fields. As a consequence, the description of S = 1/2 ions becomes strongly modified, which have important consequences for these prototypical systems for quantum operations.

2.
Molecules ; 26(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34770734

RESUMO

A series of new fac-[Mn(L)(CO)3Br] complexes where L is a bidentate chelating ligand containing mixed mesoionic triazolylidene-pyridine (MIC^py, 1), triazolylidene-triazole (MIC^trz, 2), and triazole-pyridine (trz^py, 3) ligands have been prepared and fully characterized, including the single crystal X-ray diffraction studies of 1 and 2. The abilities of 1-3 and complex fac-[Mn(MIC^MIC)(CO)3Br] (4) to catalyze the electroreduction of CO2 has been assessed for the first time. It was found that all complexes displayed a current increase under CO2 atmosphere, being 3 and 4 the most active complexes. Complex 3, bearing a N^N-based ligand exhibited a good efficiency and an excellent selectivity for reducing CO2 to CO in the presence of 1.0 M of water, at low overpotential. Interestingly, complex 4 containing the strongly electron donating di-imidazolylidene ligand exhibited comparable activity to 3, when the experiments were performed in neat acetonitrile at slightly higher overpotential (-1.86 vs. -2.14 V).

3.
Dalton Trans ; 50(17): 5911-5920, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949500

RESUMO

New manganese complexes bearing di-triazolylidene (di-trz) ligands are described. Depending on the wingtip substituents of the triazolylidene ligand and the synthetic procedure, two different ligand coordination modes were observed, i.e, bridging and chelating. A series of Mn(i) complexes of the general type fac-[Mn(di-trzR)(CO)3Br] (R = Me, Et, Mes) with a chelating di-trz ligand were prepared via Ag-transmetalation. In contrast, the in situ deprotonation of the triazolium salts with KOBut yielded the bimetallic Mn(0) complexes [Mn2(CO)8(µ-di-trzR)] with a bridging di-trz ligand when short alkyl chains (Me, Et, i-Pr) are present as the N1 substituents of the triazolylidene ligand. The molecular structures of monometallic and bimetallic complexes were determined by X-ray diffraction studies. In addition, the cationic fac-[Mn(di-trzEt)(CO)2(PPh3)2]Br complex, a rare example of a dicarbonyl Mn(i) N-heterocyclic carbene, was obtained when fac-[Mn(di-trzEt)(CO)3Br] was irradiated with visible light in the presence of PPh3. The crystal structure revealed a slightly distorted octahedral geometry around the Mn(i) centre, with the chelating di-triazolylidene ligand situated in trans position to the two CO ligands in the equatorial plane, and the two phosphine ligands occupying the axial positions. Cyclic voltammetry studies show reversible redox processes for the monometallic Mn(i) complexes, and a quasi-reversible EC mechanism for the oxidation of the bimetallic complexes. Infrared spectroelectrochemical studies along with DFT calculations for fac-[Mn(di-trzEt)(CO)3Br] suggest that the observed two consecutive reductions both occur at the metal centre.

4.
Organometallics ; 39(14): 2594-2601, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32742055

RESUMO

The reaction of coordinatively unsaturated Co(II) PCP pincer complexes with nitric oxide leads to the formation of new, air-stable, diamagnetic mono nitrosyl compounds. The synthesis and characterization of five- and four-coordinate Co(III) and Co(I) nitrosyl pincer complexes based on three different ligand scaffolds is described. Passing NO through a solution of [Co(PCPNMe-iPr)Cl], [Co(PCPO-iPr)Cl] or [Co(PCPCH2-iPr)Br] led to the formation of the low-spin complex [Co(PCP-iPr)(NO)X] with a strongly bent NO ligand. Treatment of the latter species with (X = Cl, Br) AgBF4 led to chloride abstraction and formation of cationic square-planar Co(I) complexes of the type [Co(PCP-iPr)(NO)]+ featuring a linear NO group. This reaction could be viewed as a formal two electron reduction of the metal center by the NO radical from Co(III) to Co(I), if NO is counted as NO+. Hence, these systems can be described as {CoNO}8 according to the Enemark-Feltham convention. X-ray structures, spectroscopic and electrochemical data of all nitrosyl complexes are presented. Preliminary studies show that [Co(PCPNMe-iPr)(NO)]+ catalyzes efficiently the reductive hydroboration of nitriles with pinacolborane (HBpin) forming an intermediate {CoNO}8 hydride species.

5.
Chemistry ; 25(50): 11670-11679, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31237368

RESUMO

Three CoII octaazacryptates, with different substituents on the aromatic rings (Br, NO2 , CCH), were synthesised and characterised. These and the already published non-substituted cryptate catalysed CO2 photoreduction to CO and CH4 under blue visible light at room temperature. Although CO was observed after short irradiation times and a large range of catalyst concentrations, CH4 was only observed after longer irradiation periods, such as 30 h, but with a small catalyst concentration (25 nm). Experiments with 13 C labelled CO2 showed that CO is formed and reacts further when the reaction time is long. The CCH catalyst is deactivated faster than the others and the more efficient catalyst for CH4 production is the one with Br. This reactivity trend was explained by an energy decomposition analysis based on DFT calculations.

6.
Dalton Trans ; 48(13): 4239-4247, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30843914

RESUMO

An amphiphilic iron(iii) complex with a tridentate Schiff-base ligand was prepared by condensation of a hexadecyloxy functionalised salycylaldehyde with a diamine followed by complexation with FeCl2 and anion methathesis with NaClO4. The complex shows spin crossover both in the solid state and solution. However in solution self-assembly and consequently aggregation of individual molecules form concentration dependent particles with sizes of 300 nm for higher concentrations, or 5 nm for lower concentrations. Aggregate formation was confirmed by NANO-flex 180° DLS Size, scan-rate dependent cyclic voltammetry and scanning electron microscopy. Molecular simulations were used to investigate the self-assembly of the complex in solution, including the role of residual water molecules. The simulations showed the self-assembly of reverse micelle-like structures when a small water cluster is inserted in solution, whereas no large aggregates formed in dehydrated environments. The perchlorate anions were found near the metal centres, stabilizing the aggregates around the water pool. Simulations of pre-assembled structures further showed the lack of stability of large aggregates in the absence of water. The larger aggregates promoted efficient communication between the iron(iii) centres and the compound displayed spin crossover in solution at around 220 K with a 10 K hysteresis window, as measured by NMR and SQUID magnetometry.

7.
Dalton Trans ; 45(37): 14725-33, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27294979

RESUMO

New Cu(ii)/Ni(ii) heterodinuclear complexes with salphen-type ligands were synthesised via a stepwise template method. DFT studies were performed to understand their electronic properties, showing localisation of the HOMO on the Ni(ii) fragment, while in the oxidised species the spin density was high at some carbon phenolate atoms. These new complexes were potentiodynamically electropolymerised on glassy carbon and platinum. Atomic force microscopy was used to evaluate the influence of the metal centres on the morphology of the polymers, revealing how the presence of Cu(ii) increased the surface roughness. The oxygen reduction reaction was observed on both glassy carbon and platinum modified electrodes in neutral medium.

8.
Dalton Trans ; 44(29): 13071-86, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26104487

RESUMO

Treatment of anhydrous FeX2 (X = Cl, Br) with 1 equiv. of the asymmetric chiral PNP pincer ligands PNP-R,TAD (R = iPr, tBu) with an R,R-TADDOL (TAD) moiety afforded complexes of the general formula [Fe(PNP)X2]. In the solid state these complexes adopt a tetrahedral geometry with the PNP ligand coordinated in κ(2)P,N-fashion, as shown by X-ray crystallography and Mössbauer spectroscopy. Magnetization studies led to a magnetic moment very close to 4.9µB reflecting the expected four unpaired d-electrons (quintet ground state). In solution there are equilibria between [Fe(κ(3)P,N,P-PNP-R,TAD)X2] and [Fe(κ(2)P,N-PNP-R,TAD)X2] complexes, i.e., the PNP-R,TAD ligand is hemilabile. At -50 °C these equilibria are slow and signals of the non-coordinated P-TAD arm of the κ(2)P,N-PNP-R,TAD ligand can be detected by (31)P{(1)H} NMR spectroscopy. Addition of BH3 to a solution of [Fe(PNP-iPr,TAD)Cl2] leads to selective boronation of the pendant P-TAD arm shifting the equilibrium towards the four-coordinate complex [Fe(κ(2)P,N-PNP-iPr,TAD(BH3))Cl2]. DFT calculations corroborate the existence of equilibria between four- and five-coordinated complexes. Addition of CO to [Fe(PNP-iPr,TAD)X2] in solution yields the diamagnetic octahedral complexes trans-[Fe(κ(3)P,N,P-PNP-iPr,TAD)(CO)X2], which react further with Ag(+) salts in the presence of CO to give the cationic complexes trans-[Fe(κ(3)P,N,P-PNP-iPr,TAD)(CO)2X](+). CO addition most likely takes place at the five coordinate complex [Fe(κ(3)P,N,P-PNP-iPr,TAD)X2]. The mechanism for the CO addition was also investigated by DFT and the most favorable path obtained corresponds to the rearrangement of the pincer ligand first from a κ(2)P,N- to a κ(3)P,N,P-coordination mode followed by CO coordination to [Fe(κ(3)P,N,P-PNP-iPr,TAD)X2]. Complexes bearing tBu substituents do not react with CO. Moreover, in the solid state none of the tetrahedral complexes are able to bind CO.


Assuntos
Complexos de Coordenação/química , Compostos Ferrosos/química , Monóxido de Carbono/química , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Dioxolanos/síntese química , Dioxolanos/química , Elétrons , Compostos Ferrosos/síntese química , Halogenação , Ligantes , Metanol/análogos & derivados , Metanol/síntese química , Metanol/química , Modelos Moleculares , Soluções , Espectroscopia de Mossbauer
9.
Dalton Trans ; 44(11): 5125-38, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25675271

RESUMO

Three new mononuclear oxovanadium(IV) complexes [VO(acac)(R-BIAN)]Cl (BIAN = 1,2-bis{(R-phenyl)imino}acenaphthene, R = H, 1; CH3, 2; Cl, 3) were prepared and characterized. They promoted the catalytic oxidation of olefins such as cyclohexene, cis-cyclooctene, and styrene with both tbhp (tert-butylhydroperoxide) and H2O2, and of enantiopure olefins (S(-)- and R(+)-pinene, and S(-)- and R(+)-limonene) selectively to their epoxides, with tbhp as the oxidant. The TOFs for styrene epoxidation promoted by complex 3 with H2O2 (290 mol mol(-1)V h(-1)) and for cis-cyclooctene epoxidation by 2 with tbhp (248 mol mol(-1)V h(-1)) are particularly good. Conversions reached 90% for several systems with tbhp, and were lower with H2O2. A preference for the internal C=C bond, rather than the terminal one, was found for limonene. Kinetic data indicate an associative process as the first step of the reaction and complex [VO(acac)(H-BIAN)](+) (1(+)) was isolated in an FTICR cell after adding tbhp to 1. EPR studies provide evidence for the presence of a V(IV) species in solution, until at least 48 hours after the addition of tbhp and cis-cyclooctene, and cyclic voltammetry studies revealed an oxidation potential above 1 V for complex 1. DFT calculations suggest that a [VO(H-BIAN)(MeOO)](+) complex is the likely active V(IV) species in the catalytic cycle from which two competitive mechanisms for the reaction proceed, an outer sphere path with an external attack of the olefin at the coordinated peroxide, and an inner sphere mechanism starting with a complex with the olefin coordinated to vanadium.


Assuntos
Alcenos/química , Compostos Organometálicos/química , Vanádio/química , Catálise , Eletroquímica , Cinética , Modelos Moleculares , Conformação Molecular , Oxirredução , Teoria Quântica , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...