Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Dev Biol ; 60(4-6): 159-66, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27389986

RESUMO

Neural crest (NC) development is controlled precisely by a regulatory network with multiple signaling pathways and the involvement of many genes. The integration and coordination of these factors are still incompletely understood. Overexpression of Wnt3a and the BMP antagonist Chordin in animal cap cells from Xenopus blastulae induces a large number of NC specific genes. We previously suggested that Potassium Channel Tetramerization Domain containing 15 (Kctd15) regulates NC formation by affecting Wnt signaling and the activity of transcription factor AP-2. In order to advance understanding of the function of Kctd15 during NC development, we performed DNA microarray assays in explants injected with Wnt3a and Chordin, and identified genes that are affected by Kctd15 overexpression. Among the many genes identified, we chose Duf domain containing protein 1 (ddcp1), Platelet-Derived Growth Factor Receptor a (pdgfra), Complement factor properdin (cfp), Zinc Finger SWIM-Type Containing 5 (zswim5), and complement component 3 (C3) to examine their expression by whole mount in situ hybridization. Our work points to a possible role for Kctd15 in the regulation of NC formation and other steps in embryonic development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Crista Neural/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Animais , Desenvolvimento Embrionário , Redes Reguladoras de Genes , Crista Neural/embriologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Transdução de Sinais , Regulação para Cima , Proteínas Wnt/metabolismo , Proteínas de Xenopus/metabolismo
2.
PLoS One ; 9(4): e94873, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24752240

RESUMO

March 8 is a member of a family of transmembrane E3 ubiquitin ligases that have been studied mostly for their role in the immune system. We find that March 8 is expressed in the zebrafish egg and early embryo, suggesting a role in development. Both knock-down and overexpression of March 8 leads to abnormal development. The phenotype of zebrafish embryos and Xenopus animal explants overexpressing March 8 implicates impairment of cell adhesion as a cause of the effect. In zebrafish embryos and in cultured cells, overexpression of March 8 leads to a reduction in the surface levels of E-cadherin, a major cell-cell adhesion molecule. Experiments in cell culture further show that E-cadherin can be ubiquitinated by March 8. On the basis of these observations we suggest that March 8 functions in the embryo to modulate the strength of cell adhesion by regulating the localization of E-cadherin.


Assuntos
Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Apoptose/efeitos dos fármacos , Caderinas/genética , Caderinas/metabolismo , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Perda do Embrião/genética , Perda do Embrião/patologia , Embrião não Mamífero/anormalidades , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Genoma/genética , Células HEK293 , Humanos , Morfolinos/farmacologia , Domínios RING Finger , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/efeitos dos fármacos , Xenopus/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
3.
Dev Dyn ; 242(9): 1033-42, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23749482

RESUMO

BACKGROUND: The zebrafish pineal gland (epiphysis) is a site of melatonin production, contains photoreceptor cells, and functions as a circadian clock pacemaker. Since it is located on the surface of the forebrain, it is accessible for manipulation and, therefore, is a useful model system to analyze pineal gland function and development. We previously analyzed the pineal transcriptome during development and showed that many genes exhibit a highly dynamic expression pattern in the pineal gland. RESULTS: Among genes preferentially expressed in the zebrafish pineal gland, we identified a tissue-specific form of the unc119 gene family, unc119c, which is highly preferentially expressed in the pineal gland during day and night at all stages examined from embryo to adult. When expression of unc119c was inhibited, the formation of the habenular commissure (HC) was specifically compromised. The Unc119c interacting factors Arl3l1 and Arl3l2 as well as Wnt4a also proved indispensible for HC formation. CONCLUSIONS: We suggest that Unc119c, together with Arl3l1/2, plays an important role in modulating Wnt4a production and secretion during HC formation in the forebrain of the zebrafish embryo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Estruturas Animais/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glândula Pineal/embriologia , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/embriologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Ritmo Circadiano/fisiologia , Especificidade de Órgãos/fisiologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
4.
Development ; 136(21): 3543-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19793890

RESUMO

We compared the transcriptome in the developing notochord of Xenopus laevis embryos with that of other embryonic regions. A coordinated and intense activation of a large set of secretory pathway genes was observed in the notochord, but not in notochord precursors in the axial mesoderm at early gastrula stage. The genes encoding Xbp1 and Creb3l2 were also activated in the notochord. These two transcription factors are implicated in the activation of secretory pathway genes during the unfolded protein response, where cells react to the stress of a build-up of unfolded proteins in their endoplasmic reticulum. Xbp1 and Creb3l2 are differentially expressed but not differentially activated in the notochord. Reduction of expression of Xbp1 or Creb3l2 by injection of antisense morpholinos led to strong deficits in notochord but not somitic muscle development. In addition, the expression of some, but not all, genes encoding secretory proteins was inhibited by injection of xbp1 morpholinos. Furthermore, expression of activated forms of Xbp1 or Creb3l2 in animal explants could activate a similar subset of secretory pathway genes. We conclude that coordinated activation of a battery of secretory pathway genes mediated by Xbp1 and Creb/ATF factors is a characteristic and necessary feature of notochord formation.


Assuntos
Via Secretória , Xenopus/embriologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Embrião não Mamífero/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Notocorda/embriologia , Dobramento de Proteína , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
5.
Dev Dyn ; 237(6): 1636-44, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18498094

RESUMO

Brd4 is a member of the BET (bromodomains and extraterminal) subfamily of bromodomain proteins that includes chromatin-modifying proteins and transcriptional regulators. Brd4 has a role in cell cycle progression, making it indispensable in mouse embryos and cultured cells. The N-terminal domain of Brd4 participates in a fusion oncogene. Brd4 associates with acetylated histones in chromatin, and this association persists during mitosis implicating Brd4 in epigenetic memory. Brd4 sequence, particularly the bromodomains and ET domain, is conserved in the zebrafish and Xenopus laevis proteins reported here. Brd4 is expressed and localized on mitotic chromosomes in early zebrafish embryos before and after the midblastula transition (MBT), indicating that the Brd4-chromosome association is a conserved property that is maintained even before zygotic transcription. The association of Brd4 with acetylated histones may also be conserved in early embryos as we found that histones H3 and H4 are already acetylated during pre-MBT stages.


Assuntos
Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Mitose , Proteínas de Peixe-Zebra/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Histonas/química , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Distribuição Tecidual , Xenopus laevis , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Int J Dev Biol ; 51(4): 315-20, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17554683

RESUMO

Myoskeletin was identified as a gene induced by activin in animal cap explants of Xenopus laevis. This gene encodes a protein related to the transcription factor Myocardin. Whereas Myocardin is expressed in the heart and is known to be involved in heart and smooth muscle formation, Myoskeletin is expressed in the somites and in hypaxial muscle precursors as they migrate away from the somites during tadpole stages. Myoskeletin is required for hypaxial muscle formation, as reduction of its expression through injection of an antisense morpholino oligonucleotide leads to suppression of hypaxial muscle formation. In overexpression experiments in animal caps, Myoskeletin is capable of inducing multiple genes including skeletal muscle, cardiac muscle and smooth muscle-specific genes. We conclude that Myoskeletin is a somite and hypaxial muscle-specific member of the Myocardin family that is required for hypaxial muscle formation.


Assuntos
Músculo Esquelético/fisiologia , Proteínas Nucleares/metabolismo , Somitos/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Padronização Corporal/fisiologia , Sequência Conservada , Embrião não Mamífero , Dados de Sequência Molecular , Desenvolvimento Muscular , Músculo Esquelético/embriologia , Proteínas Nucleares/genética , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transativadores/genética , Fatores de Transcrição/genética , Xenopus/metabolismo , Proteínas de Xenopus/genética
7.
Dev Dyn ; 225(4): 448-56, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12454922

RESUMO

The Lim-1 gene encodes a LIM-homeodomain transcription factor that is highly conserved among vertebrates and is required for successful gastrulation and head formation. The expression of this gene in the mesoderm of the gastrula is known to require an activin/nodal signal. Earlier studies have shown that the Xenopus Lim-1 (Xlim-1) gene contains an activin response element (ARE) in its first intron, which cooperates with an activin-unresponsive upstream promoter in the regulation of the gene. Here, we show that the Xlim-1 ARE contains a cluster of FAST-1/FoxH1 and Smad4 recognition sites; such sites have been shown to mediate activin/nodal responses in other genes. By using reporter constructs with mutated FAST-1/FoxH1 sites and FAST-1/FoxH1 protein chimeras, we show that the regulation of Xlim-1 by activin depends on FAST-1/FoxH1 function. Comparative studies on the zebrafish lim1 gene indicate the presence of FoxH1 sites in the first intron of this gene and provide evidence for the requirement for FoxH1 function in its regulation. These results illuminate the conserved nature of the transcriptional regulation of the Lim-1 gene in different vertebrate animals.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Xenopus , Proteínas de Peixe-Zebra , Ativinas/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Evolução Molecular , Fatores de Transcrição Forkhead , Genes Reporter , Íntrons , Proteínas com Homeodomínio LIM , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular , Fatores de Crescimento Neural , Proteína Nodal , Ligação Proteica , RNA Mensageiro/metabolismo , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais , Proteínas Smad , Proteína Smad4 , Fator de Crescimento Transformador beta/metabolismo , Xenopus , Peixe-Zebra
8.
Dev Growth Differ ; 38(4): 439-448, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37281116

RESUMO

During embryogenesis the differentiation of distinct tissues is marked by the expression of tissue-specific genes. In Xenopus, the neural-specific gene nrp-1 is activated following the midblastula transition (MBT), and is then expressed exclusively in developing neural tissue. To pursue an investigation of the transcriptional regulation of nrp-1, the genomic DNA encoding nrp-1 was isolated and its structure analyzed. Nrp-1 lacks a canonical TATA box proximal to the start site of transcription, but the 5' flanking sequence is highly GC-rich. Injection studies with nrp-1/chloramphenicol acetyltransferase and luciferase constructs demonstrate that in Xenopus embryos, 200 nt of the 5' flanking sequence of nrp-1 are sufficient to drive the expression of reporter genes soon after the MBT, albeit not in a tissue-specific manner. This expression is enhanced by the inclusion of larger regions of the nrp-1 gene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...