Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Int ; 117: 188-203, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29454001

RESUMO

Phenylketonuria (PKU) is a disorder of phenylalanine (Phe) metabolism caused by deficient phenylalanine hydroxylase (PAH) activity. The deficiency results in increased levels of Phe and its metabolites in fluids and tissues of patients. PKU patients present neurological signs and symptoms including hypomyelination and intellectual deficit. This study assessed brain bioenergetics at 1 h after acute Phe administration to induce hyperphenylalaninemia (HPA) in rats. Wistar rats were randomized in two groups: HPA animals received a single subcutaneous administration of Phe (5.2 µmol/g) plus p-Cl-Phe (PAH inhibitor) (0.9 µmol/g); control animals received a single injection of 0.9% NaCl. In cerebral cortex, HPA group showed lower mitochondrial mass, lower glycogen levels, as well as lower activities of complexes I-III and IV, ATP synthase and citrate synthase. Higher levels of free Pi and phospho-AMPK, and higher activities of LDH, α-ketoglutarate dehydrogenase and isocitrate dehydrogenase were also reported in cerebral cortex of HPA animals. In striatum, HPA animals had higher LDH (pyruvate to lactate) and isocitrate dehydrogenase activities, and lower activities of α-ketoglutarate dehydrogenase and complex IV, as well as lower phospho-AMPK immunocontent. In hippocampus, HPA rats had higher mRNA expression for MFN1 and higher activities of α-ketoglutarate dehydrogenase and isocitrate dehydrogenase, but decreased activities of pyruvate dehydrogenase and complexes I and IV. In conclusion, our data demonstrated impaired bioenergetics in cerebral cortex, striatum and hippocampus of HPA rats.


Assuntos
Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Metabolismo Energético/fisiologia , Hipocampo/metabolismo , Fenilcetonúrias/metabolismo , Doença Aguda , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Córtex Cerebral/patologia , Corpo Estriado/patologia , Hipocampo/patologia , Masculino , Fenilcetonúrias/patologia , Ratos , Ratos Wistar
2.
Biomed Chromatogr ; 31(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28370241

RESUMO

There is increasing interest in natural antioxidants that are candidates for the prevention of brain damage occurring in major depressive disorders. Cecropia pachystachya is a tropical tree species of Central and South America and a rich source of polyphenols, particularly flavonoids. The aim of this study was to characterize the flavonoid profile of an enriched flavonoid fraction of C. pachystachya (EFF-Cp) and evaluate the antidepressant-like effects of its acute administration in behavior, cytokine levels, oxidative stress and energy metabolism parameters. The EFF-Cp chemical characterization was performed by HPLC/DAD and LC/QTOF. The antidepressant-like effects were performed by the forced swimming test, splash test and open field test. EFF-Cp revealed 15 flavonoids, including seven new glycosyl flavonoids for C. pachystachya. Quantitatively, EFF-Cp showed isoorientin (43.46 mg/g), orientin (23.42 mg/g) and isovitexin (17.45 mg/g) as major C-glycosyl flavonoids. In addition, EFF-Cp at doses 50 and 100 mg/kg reduced the immobility time in the forced swimming test, without changing the locomotor activity and grooming time. In addition, EFF-Cp was able to prevent the oxidative damage in some brain areas. In conclusion, the results of this study suggest that EFF-Cp exerts antidepressant-like effects with its antioxidant properties.


Assuntos
Antidepressivos/análise , Cecropia/química , Cromatografia Líquida/métodos , Flavonoides/análise , Estresse Oxidativo/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Antidepressivos/química , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Citocinas/análise , Estabilidade de Medicamentos , Flavonoides/química , Flavonoides/farmacologia , Masculino , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
3.
Metab Brain Dis ; 32(4): 1043-1050, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28315992

RESUMO

Tyrosinemia type II is an inborn error of metabolism caused by a mutation in a gene encoding the enzyme tyrosine aminotransferase leading to an accumulation of tyrosine in the body, and is associated with neurologic and development difficulties in numerous patients. Because the accumulation of tyrosine promotes oxidative stress and DNA damage, the main aim of this study was to investigate the possible antioxidant and neuroprotective effects of omega-3 treatment in a chemically-induced model of Tyrosinemia type II in hippocampus, striatum and cerebral cortex of rats. Our results showed chronic administration of L-tyrosine increased the frequency and the index of DNA damage, as well as the 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the hippocampus, striatum and cerebral cortex. Moreover, omega-3 fatty acid treatment totally prevented increased DNA damage in the striatum and hippocampus, and partially prevented in the cerebral cortex, whereas the increase in 8-OHdG levels was totally prevented by omega-3 fatty acid treatment in hippocampus, striatum and cerebral cortex. In conclusion, the present study demonstrated that the main accumulating metabolite in Tyrosinemia type II induce DNA damage in hippocampus, striatum and cerebral cortex, possibly mediated by free radical production, and the supplementation with omega-3 fatty acids was able to prevent this damage, suggesting that could be involved in the prevention of oxidative damage to DNA in this disease. Thus, omega-3 fatty acids supplementation to Tyrosinemia type II patients may represent a new therapeutic approach and a possible adjuvant to the curren t treatment of this disease.


Assuntos
Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Tirosinemias/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Tirosina , Tirosinemias/induzido quimicamente
4.
Metab Brain Dis ; 32(2): 519-528, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27987060

RESUMO

Studies have shown that oxidative stress is involved in the pathophysiology of bipolar disorder (BD). It is suggested that omega-3 (ω3) fatty acids are fundamental to maintaining the functional integrity of the central nervous system. The animal model used in this study displayed fenproporex-induced hyperactivity, a symptom similar to manic BD. Our results showed that the administration of fenproporex, in the prevent treatment protocol, increased lipid peroxidation in the prefrontal cortex (143%), hippocampus (58%) and striatum (181%), and ω3 fatty acids alone prevented this change in the prefrontal cortex and hippocampus, whereas the co-administration of ω3 fatty acids with VPA prevented the lipoperoxidation in all analyzed brain areas, and the co-administration of ω3 fatty acids with Li prevented this increase only in the prefrontal cortex and striatum. Moreover, superoxide dismutase (SOD) activity was decreased in the striatum (54%) in the prevention treatment, and the administration of ω3 fatty acids alone or in combination with Li and VPA partially prevented this inhibition. On the other hand, in the reversal treatment protocol, the administration of fenproporex increased carbonyl content in the prefrontal cortex (25%), hippocampus (114%) and striatum (91%), and in prefrontal coxter the administration of ω3 fatty acids alone or in combination with Li and VPA reversed this change, whereas in the hippocampus and striatum only ω3 fatty acids alone or in combination with VPA reversed this effect. Additionally, the administration of fenproporex resulted in a marked increase of TBARS in the hippocampus and striatum, and ω3 fatty acids alone or in combination with Li and VPA reversed this change. Finally, fenproporex administration decreased SOD activity in the prefrontal cortex (85%), hippocampus (52%) and striatum (76%), and the ω3 fatty acids in combination with VPA reversed this change in the prefrontal cortex and striatum, while the co-administration of ω3 fatty acids with Li reversed this inhibition in the hippocampus and striatum. In conclusion, our results support other studies showing the importance of ω3 fatty acids in the brain and the potential for these fatty acids to aid in the treatment of BD.


Assuntos
Anfetaminas/toxicidade , Antimaníacos/uso terapêutico , Depressores do Apetite/toxicidade , Comportamento Animal/efeitos dos fármacos , Ácidos Graxos Ômega-3/uso terapêutico , Hipercinese/psicologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Química Encefálica/efeitos dos fármacos , Hipercinese/induzido quimicamente , Hipercinese/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Carbonato de Lítio/uso terapêutico , Masculino , Carbonilação Proteica/efeitos dos fármacos , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Ácido Valproico/uso terapêutico
5.
Metab Brain Dis ; 32(2): 557-564, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27924409

RESUMO

Tyrosinemia type II is a rare autosomal recessive disease caused by deficiency of hepatic tyrosine aminotransferase and is associated with neurologic and development difficulties in numerous patients. Considering that the mechanisms underlying the neurological dysfunction in hypertyrosinemic patients are poorly known and that high concentrations of tyrosine provoke mitochondrial dysfunction and oxidative stress, in the present study we investigated the in vivo influence of antioxidants (N-acetylcysteine, NAC; and deferoxamine, DFX) administration on the inhibitory effects on parameters of energy metabolism in cerebral cortex, hippocampus and striatum of rats, provoked by chronic administration of L.-tyrosine. Our results showed that chronic administration of L.-tyrosine results in a marked decrease in the activity of citrate synthase in all the analyzed structures and succinate dehydrogenase activities in hippocampus and striatum, and that antioxidants administration can prevent this inhibition in hippocampus and striatum. Moreover, chronic administration of L.-tyrosine inhibited the activity of complex I, II-III and IV in the striatum, which can be prevented by antioxidant treatment. However, the co-administration of NAC plus DFX could not prevent the inhibition of creatine kinase activity in the striatum. In conclusion, the present study demonstrates that the administration of antioxidants NAC and DFX attenuates the L.-tyrosine effects on enzymes of the Krebs cycle and the mitochondrial respiratory chain, suggesting that impairment of energy metabolism can be involved with oxidative stress. These results also indicate a possible neuroprotective role for NAC and DFX as a potential adjuvant therapy to the patients with Tyrosinemia type II.


Assuntos
Antioxidantes/farmacologia , Química Encefálica/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Tirosina/farmacologia , Acetilcisteína/farmacologia , Animais , Citrato (si)-Sintase/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Creatina Quinase/metabolismo , Desferroxamina/farmacologia , Transporte de Elétrons/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Succinato Desidrogenase/metabolismo , Tirosinemias/tratamento farmacológico , Tirosinemias/metabolismo
6.
Mol Neurobiol ; 54(6): 3935-3947, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27246566

RESUMO

Studies have shown that changes in energy metabolism are involved in the pathophysiology of bipolar disorder (BD). It was suggested that omega-3 (ω3) fatty acids have beneficial properties in the central nervous system and that this fatty acid plays an important role in energy metabolism. Therefore, the study aimed to evaluate the effect of ω3 fatty acids alone and in combination with lithium (Li) or valproate (VPA) on behaviour and parameters of energy metabolism in an animal model of mania induced by fenproporex. Our results showed that co-administration of ω3 fatty acids and Li was able to prevent and reverse the increase in locomotor and exploratory activity induced by fenproporex. The combination of ω3 fatty acids with VPA was only able to prevent the fenproporex-induced hyperactivity. For the energy metabolism parameters, our results showed that the administration of Fen for the reversal or prevention protocol inhibited the activities of succinate dehydrogenase, complex II and complex IV in the hippocampus. However, hippocampal creatine kinase (CK) activity was decreased only for the reversal protocol. The ω3 fatty acids, alone and in combination with VPA or Li, prevented and reversed the decrease in complex II, IV and succinate dehydrogenase activity, whereas the decrease in CK activity was only reversed after the co-administration of ω3 fatty acids and VPA. In conclusion, our results showed that the ω3 fatty acids combined with VPA or Li were able to prevent and reverse manic-like hyperactivity and the inhibition of energy metabolism in the hippocampus, suggesting that ω3 fatty acids may play an important role in the modulation of behavioural parameters and energy metabolism.


Assuntos
Antimaníacos/uso terapêutico , Comportamento Animal , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/metabolismo , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos Ômega-3/uso terapêutico , Anfetaminas , Animais , Antimaníacos/farmacologia , Transtorno Bipolar/induzido quimicamente , Transtorno Bipolar/genética , Citrato (si)-Sintase/metabolismo , Creatina Quinase/metabolismo , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Lítio/administração & dosagem , Lítio/farmacologia , Lítio/uso terapêutico , Masculino , Ratos Wistar , Succinato Desidrogenase/metabolismo , Ácido Valproico/administração & dosagem , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico
7.
Curr Neurovasc Res ; 12(3): 283-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26036973

RESUMO

Several studies have found that the molecular mechanisms of mitochondrial energy metabolism are impaired in major depressive disorder (MDD). Classic antidepressants and atypical antipsychotics can alter the function of enzymes involved in adenosine triphosphate (ATP) metabolism. Quetiapine is an atypical antipsychotic that, in addition to having a therapeutic benefit in treating MDD, appears to exert antioxidant and neuroprotective effects. Therefore, we aimed to evaluate the acute and chronic effects of quetiapine on the activity of enzyme complexes I to IV of the mitochondrial respiratory chain and creatine kinase (CK) in brain regions involved with MDD. After a single dose or serial injections over 14 days of quetiapine (20, 40, and 80 mg) were administered, isolates from the pre- frontal cortex, hippocampus, amygdala and nucleus accumbens were analyzed for enzyme activity levels. The enzyme activity varied according to the dose, brain region, and acute or chronic dosing protocols. In general, complexes I-III activity was increased, especially after acute administration. Acute administration also increased the activity of complex IV and CK in the amygdala while complex I was inhibited in the prefrontal cortex and nucleus accumbens. These results suggest that quetiapine produces an increase in respiratory chain complex activity, which may be underlying its efficacy against psychiatric disorders and neuronal damage.


Assuntos
Antipsicóticos/farmacologia , Encéfalo , Complexos Multienzimáticos/metabolismo , Fumarato de Quetiapina/farmacologia , Análise de Variância , Animais , Antidepressivos Tricíclicos/farmacologia , Encéfalo/anatomia & histologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Creatina Quinase/metabolismo , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Imipramina/farmacologia , Masculino , Complexos Multienzimáticos/classificação , Ratos , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...